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APPENDIX A: FINITE-SAMPLE THEORY

A.1. Lemma 1: Weak∗ compactness of C(α-s)

Description: The first lemma of this appendix shows that the set of α-similar tests, denoted
C(α-s), is compact relative to the space of essentially bounded measurable functions endowed with
the weak∗ topology.

Relevance of Lemma 1: This lemma will be used to prove part ii) of Theorem 1. The weak∗ com-
pactness of C(α-s) will allow the application of an essentially complete class Theorem [See Theorem
3, p. 87, Chapter 2 in Ferguson (1967)].

Notation: Let B(Rn) denote the Borel σ-algebra on Rn. For any set S ∈ B(Rn), let B(Rn)S denote
the sub-space σ-algebra. Measurability of the function f : S → R is always relative to the measur-
able spaces (S , B(Rn)S)-(R, B(R)). The integral of f with respect to the Lebesgue measure in Rn

is denoted by
∫

S f(s)ds. Integration with respect to a different measure µ is denoted
∫

S f(s)dµ(s)
or
∫

S fdµ if no ambiguity arises. All vectors are column vectors. For notational convenience, (a, b)
will sometimes replace (a′, b′)′. The dimension of the column vector “a” is denoted da.

Preliminaries 1 (L1 and L∞): Since the sample space X ∈ B(Rs), the triplet (X, B(Rs)X, λs)
is a well-defined σ-finite measure space, where λS denotes the Lebesgue measure in Rs restricted to
X. Note that B(Rs)X = B(X) whenever X is endowed with the sub-space topology relative to Rs.
Following Rudin (2006), p. 65, let L1(X, B(X), λs) denote the space of all real-valued measurable
functions f that satisfy ||f ||1 ≡

∫
X

|f(x)|dx < ∞. Let L∞(X, B(X), λs) denote the class of all
essentially bounded real-valued measurable functions (Rudin (2006) p. 66).

Remark 3: Identify the class of all tests C as a subset of L∞(X, B(X), λs)

C ≡ {φ ∈ L∞(X, B(X), λs)
∣∣ φ(x) ∈ [0, 1] for λs-a.e. x ∈ X}.

And note that the elements of any statistical model {f(x; θ)}θ∈Θ are elements of L1(X, B(X), λs),
by the definition of probability density function

∫
X

f(x; θ)dx = 1 < ∞ for all θ ∈ Θ.

Preliminaries 2 (The dual space of L1): Let [L1(X, B(X), λs)]∗ denote the dual space of
L1(X, B(X), λs), i.e., the space of all continuous (w.r.t. ||f ||1 ) linear functionals on L1(X, B(X), λs);
see Rudin (2005), p. 56. Let Λ denote an element of the dual space [L1(X, B(X), λs)]∗. By Theorem
6.16 in Rudin (2006), p. 127 and Theorem 1.18 in Rudin (2005), p. 15; the space [L1(X, B(X), λs)]∗

is isometrically isomorphic to L∞(X, B(X), λs). Therefore, one can identify each functional Λ with a
unique element (up to equivalence) g ∈ L∞(X, B(X), λs), and vice versa: for f ∈ L1(X, B(X), λs)∗,
the functional Λ ∈ [L1(X, B(X), λs)]∗ is of the form:

Λ(f) ≡
∫

X

g(x)f(x)dx for some g ∈ L∞(X, B(X), λs).

Preliminaries 3 (weak∗ topology on L∞): Endow the space L∞(X, B(X), λs) with the topology
induced by the weak∗-topology on the space [L1(X, B(X), λs)]∗; see Rudin (2005), p. 67, 68. The
new topological space is denoted by (L∞(X, B(X), λs), T ∗). Denote convergence in such topology
by →∗. Note that, by definition, {gn}n∈N →∗ g if and only if

∫

X

f(x)gn(x)dx →
∫

X

f(x)g(x)dx ∀ f ∈ L1(X, B(X), λs).
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Let (X, Θ, f, Θ0) be a hypothesis testing problem. Define

C(α-s) ≡
{

φ ∈ C
∣∣∣∣∣ Eθ[φ(X)] − α] ≡

∫

X

(φ(x) − α)f(x; θ) = 0 ∀θ ∈ BdΘ0 ∀
}

Let (L∞(X, B(X), λs), T ∗) be the space of essentially bounded functions topologized with the weak∗

topology. For any A ⊂ L∞(X, B(X), let T ∗
A denote the subset topology induced by T ∗

Lemma 1: The set C(α-s) is compact relative to (C, T ∗
C ).

Proof: The outline of the proof is the following. I show that the set C(α-s) is a sequentially
closed subset of C with the relative weak∗ topology. Then I use the Banach-Alaoglu theorem and
the topological separability of L1(X, B(X), λs) to establish the compactness of C(α-s).

(Sequential Closedness) Take any convergent sequence of tests φn →∗ φ with {φn}n∈N ⊆ C(α-s). I
want to show that φ ∈ C(α-s). First, I show that φ(x) ∈ C; i.e., φ ∈ [0, 1] for almost every x ∈ X.
Suppose not. Then there exists a measurable set A ∈ B(X) with λs(A) > 0 such that φ(x) > 1 or
φ(x) < 0 for all x ∈ A. Without loss of generality assume φ(x) > 1. Since λs is σ-finite, there exists
a countable collection {En}n∈N such that ∪n∈NEn = X and λs(En) < ∞ for every n. Consider the
sequence of sets {A∩En}n∈N. Note that 0 ≤ λs(A∩En) < ∞ for all n ∈ N. In addition, there exists
N ∈ N for which 0 < λs(A ∩ EN ), otherwise λs(A) = λs(∪∞

n=1(A ∩ En)) ≤
∑∞

n=1
λs(A ∩ En) =

0. Consider the indicator function 1A∩EN . Since 0 < λs(A ∩ EN ) < ∞, the indicator function
1A∩EN ∈ L1(X, B(X), λs). Note that

λs(A ∩ EN ) <

∫

X

1A∩EN (x)φ(x)dx = lim
n→∞

∫

X

1A∩EN (x)φn(x)dx ≤ λs(A ∩ EN ).

A contradiction. Therefore φ(x) ≤ 1 λs-almost everywhere in X. An analogous argument yields
φ(x) ≥ 0 λs-almost everywhere. Therefore φ ∈ C. Now, I need to show that φ ∈ C(α-s). By
assumption, for every θ ∈ BdΘ0 f(·; θ) is an element of L1(X, B(X), λs). Consequently, f(·, θ) ∈
L1(X, B(X), λs). Since φn ∈ C(α-s) for every n ∈ N weak∗ convergence yields

0 = lim
n→∞

∫

X

f(x; θ)(φn(x) − α)dx =
(

lim
n→∞

∫

X

f(x; θ)φn(x)dx
)

−
∫

X

f(x; θ)αdx

=

∫

X

f(x; θ)φ(x)dx −
∫

X

f(x; θ)αdx

=

∫

X

f(x; θ)(φ(x) − α)dx.

So φ ∈ C(α-s). This implies C(α-s) is sequentially closed in C endowed with the weak∗ topology.

(Compactness) Let

V ≡
{

f ∈ L1(X, B(X), λs) :

∫

X

|f(x)|dx ≤ 1
}

Note that V is a neighborhood of the function 0 in the space L1(X, B(X), λs). Let

(A.1) K ≡
{

g ∈ L∞(X, B(X), λs) :
∣∣∣
∫

X

f(x)g(x)
∣∣∣dx ≤ 1 ∀ f ∈ V

}
.

Note that C(α-s) ⊆ C ⊆ K, as for any test
∣∣∣
∫

X
f(x)φ(x)dx

∣∣∣ ≤
∫

X
|f(x)|φ(x)dx ≤

∫
X

|f(x)|dx ≤
1. By the Banach-Alaouglu Theorem the set K is compact in the weak∗ topology; see Rudin
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(2005), p. 68, Theorem 3.15. Furthermore, the space L1(X, B(X), λs) is topologically separable as
(X, B(X), λs) is a separable measure space; see exercise 10, Chapter 1 of Stein (2011). Therefore,
Theorem 3.16 in Rudin (2005) p. 70 implies that the topological space (K, T ∗

K) is compact and
metrizable. Since every metrizable space is first-countable—consequently, Frechet-Urysohn— the
sequential closure of C(α-s) coincides with its closure. Therefore, the set C(α−s) is a closed subset of
the compact topological space (K, T ∗

K). I conclude that (C(α-s), T ∗
C(α-s)) is compact and metrizable.

That is, the space of α-similar tests is weak∗ compact. Q.E.D.
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A.2. Lemma 2: Tests that minimize risk in C(α-s) are admissible in the class of all tests

Description: Let (X, Θ, f(x; θ), Θ0) be a hypothesis testing problem with a product sample space
(X1, X2). Θ0 6= ∅ is assumed to be a closed set relative to (Θ, T ) and such that Bd(Θ0) = Θ0.

Relevance of Lemma 2: Lemma 2 will be used to establish part i) of Theorem 1.

Lemma 2: Let w1 denote a full-support probability measures over int Θ1. Define the minimum

average risk over the set of α-similar procedures as:

M(w1) ≡ arg min
φ∈C(α-s)

∫

int Θ1

R(φ, θ)dw1(θ) ,

and suppose that Assumption F0 holds. Then,

L2a: If the sample space X is topologically separable:

M(w1) 6= ∅.

L2b: Under Assumption F0,

φ∗ ∈ M(w1) =⇒ φ∗ is admissible in C(α-s).

L2c: Under Assumption F0:

φ∗ ∈ M(w1) =⇒ φ∗ is admissible in C.

Proof of L2a: For simplicity, assume that w1 has associated pdf p1. I have shown that the class of
tests C(α-s) is weak∗ compact. This class is non-empty, as it contains the randomized test φ(x) = α.
To establish L2a it will be sufficient to show that the objective function

W∗(φ) ≡
∫

int Θ1

R(φ, θ)p1(θ)dθ

is continuous in the weak∗ topology.

L2a-Step 1 (Fubini’s Theorem:) Since the image of any test φ ∈ C is contained in the interval

[0, 1] λs-a.e. and f(x; θ) ∈ L1(X, B(X), λs) for all θ, it follows that
(∫

X
φ(x)f(x; θ)dx

)
≤ 1 for

every θ ∈ Θ. Furthermore, since p1(x) is also a probability density functions on IntΘ1 and IntΘ0

the following holds
∫

IntΘ1

(∫

X

φ(x)f(x; θ)dx
)

p1(θ)dθ ≤ 1 < ∞

Therefore, an application of Fubini’s theorem in Billingsley (1995), p. 234 yields
∫

int Θ1

R(φ, θ)p1(θ)dθ ≡
∫

int Θ1

(∫

X

(1 − φ(x))f(x; θ)dx
)

p1(θ)dθ =

∫

X

(1 − φ(x))f∗
1 (x)dx

where f∗
1 is the “integrated" likelihood given by

(A.2) f∗
1 (x) ≡

∫

int Θ1

f(x; θ)p1(x)dθ,
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Note that f∗
1 is an element of L1(X, B(X), λs). We can re-write

(A.3) W∗(φ) ≡
∫

X

(1 − φ(x))f∗
1 (x)dx

L2a-Step 2 (Sequential Continuity of W∗:) I now show that W∗ is continuous on the compact
metrizable space (C(α-G), T ∗

C(α-s)). It suffices to establish sequential continuity. Take any sequence
of tests φn →∗ φ. Since f∗

1 is an element of L1(X, B(X), λX), convergence in the weak∗ topology
yields

∫

X

φn(x)f∗
1 (x)dx →

∫

X

φ(x)f∗
1 (x)dx.

Therefore, the continuity of W implies

W∗(φn) ≡ 1 −
∫

X

φn(x)f∗
1 (x)dx → 1 −

∫

X

φ(x)f∗
1 (x)dx,

= W∗(φ).
Therefore, W∗ is a continuous functional defined on the compact space (C(α-s), T ∗

C(α-s)), and
C(α-s) 6= ∅, as it contains the test φ(x) = α. This implies M(w1) 6= ∅.

L2b : Let φ∗ ∈ M(w1). I show that if φ′ ∈ C(α-s) satisfies

(A.4) Eθ[φ′(X)] ≥ Eθ[φ∗(X)] ∀ θ ∈ Θ1

then

(A.5) Eθ[φ′(x)] = Eθ[φ∗(x)] ∀ θ ∈ Θ1.

Consequently, there is no test φ′ ∈ C(α-s) that “weakly dominates” φ∗ ; i.e, R(φ′, θ) ≤ R(φ∗, θ)
with strict inequality for some θ.

Suppose (A.4) hold, but (A.5) does not. Then, the following is true:

C1 There exists θ̃ ∈ Θ1 such that ∆φ′,φ∗(θ̃) ≡ Eθ̃[φ′(X)] − Eθ̃[φ∗(X)] > 0

C1 and the continuity of ∆φ′,φ(·) at θ̃ implies the existence of an open neighborhood τθ̃ for which
∆φ′,φ∗ (θ) > 0 for all θ ∈ τθ̃. Note that Θ1 6= ∅ is an open set. It follows that the set Sθ̃ defined
by Sθ̃ ≡ τθ̃ ∩ Θ1 satisfies three properties: it is non-empty, it is open, and it is contained in Θ1.
Since w1(θ) has full support on IntΘ1,

∫
A

dw1(θ) > 0 for any open set A contained in Θ1. Note
that ∆φ′,φ∗ (θ) > 0 for all θ ∈ Sθ̃ and (A.4) implies

∫

Θ1

(∫

X

(1 − φ′(x))f(x; θ)dx
)

dw1(θ) <

∫

Θ1

(∫

X

(1 − φ∗(x))f(x; θ)dx
)

dw1(θ)

This contradicts the fact that φ∗ ∈ M(w1). I conclude C1 cannot hold.

Therefore, (A.4) implies (A.5). I conclude that φ∗ is admissible in C(α-s).

L2c : I now show that a test φ∗ ∈ M(w1) is admissible in the class of all tests. This proof is based
on the arguments provided in Chernozhukov et al. (2009). The proof is divided into two steps.



ADMISSIBLE, SIMILAR TESTS: A CHARACTERIZATION 35

Step 1: First I show that if φ′ ∈ C satisfies

(A.6) Eθ[φ′(X)] ≤ Eθ[φ∗(X)] ∀ θ ∈ Θ0

and

(A.7) Eθ[φ′(X)] ≥ Eθ[φ∗(X)] ∀ θ ∈ Θ1

with some strict inequality, then φ′ is α-similar on BdΘ0 = Θ0. Consequently, any test φ′ that
“weakly dominates” φ∗ (i.e, R(φ′, θ) ≤ R(φ∗, θ) with strict inequality for some θ) must be α-similar
on the boundary of Θ0.

Let Cns ⊂ C be the class of tests that are not similar on the boundary of Θ0. This is, φ ∈ Cns

if and only if there exists θ, θ′ ∈ BdΘ0 such that Eθ[φ(x)] 6= Eθ′ [φ(x)]. Partition C according
to Cns so that C ≡ Cns ∪ (C\Cns). Take any test φ′ ∈ Cns that satisfies (A.6). Since φ′ is an
element of Cns and Θ0 contains its boundary (as it is closed), there exists θ ∈ BdΘ0 such that
∆φ′,φ∗ (θ) ≡ Eθ[φ′(X)] − Eθ[φ∗(X)] < 0. Because ∆φ′,φ∗(θ) < 0 and the function ∆φ′,φ∗ (·) is
continuous at θ, there exists an open neighborhood τθ ∈ T such that ∆φ′,φ∗ (θ) < 0 for all θ ∈ τθ.
Since θ is an element of Bd Θ0, then τθ ∩ Θ1 6= ∅. The latter implies there exists θ1 ∈ Θ1 such that
∆φ′,φ∗

α
(θ1) = Eθ1 [φ′(X)] − Eθ1 [φ∗

α(X)] < 0. Therefore, equation (A.6) and (A.7) cannot hold. We
conclude there is no test φ′ ∈ Cns that satisfies (A.6) and (A.7).
Since Cns partitions C, a test φ′ ∈ C that satisfies (A.6) and (A.4) must be an element of C\Cns (as
φ′ /∈ Cns). Equation (A.6) implies φ′ is α′-similar on the boundary with α′ ≤ α. Two cases follow:
α′ < α or α′ = α. In the first case, the argument in the previous paragraph implies that φ′ will vio-
late (A.4). We conclude that any test that satisfies (A.6) and (A.4) must be α-similar on BdΘ0 = Θ0.

Step 2: Since φ∗ ∈ M(w1), φ∗ is admissible in C(α-s). Therefore, there is no α-similar-on-the-
boundary test such that R(φ′, θ) ≤ R(φ∗, θ) with strict inequality for some θ ∈ Θ. Since —by Step
1— any test φ′ ∈ C that that satisfies (A.6) and (A.4) must be α-similar on BdΘ0, I conclude φ∗

is admissible in C
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A.3. Proof of Theorem 1

Proof of Part i): The proof of the first part follows directly from Lemma 2. Let C(α−s) denote
the class of α-similar tests. Simply note that:

WAP(φw,α
WAP, w) ≡

∫

Θ1

(∫

X

φ
w,α
WAP(x)f(x; θ)dx

)
dw(θ)

=

∫

Θ1

Eθ [φw,α
WAP(x)] dw(θ)

= 1 −
∫

Θ1

R(φw,α
WAP, θ)dw(θ)

(by the definition of risk function)

≥ WAP(φ, w), ∀φ ∈ C(α − s)

This implies that
∫

Θ1

R(φw,α
WAP, θ)dw(θ) ≤

∫

Θ1

R(φ, θ)dw(θ), ∀φ ∈ C(α − s)

This means that WAP-similar tests of level α are average risk minimizers subject to an α-similarity
constraint. Since Θ0 is assumed open, then intΘ1 = Θ1. Lemma 2, part c, implies that φ

w,α
WAP is

admissible in the class of all tests.
Q.E.D.

Proof of Part ii): The proof is based on the essentially complete class theorem. See Theorem
2.9.2 and 2.10.3 in Ferguson (1967). See also Le Cam (1986), Chapter 2, Theorem 1.

Note first that the class C(α − s) is essentially complete relative to itself (as it contains all the
α-similar tests). Note that the set C(α − s) is weak∗ compact by Lemma 1. In addition, the risk
function of the testing problem R(φ, θ) is—by definition of weak∗ topology—continuous (in φ) for
all θ ∈ Θ. This verifies the assumptions of Theorem 2.9.2, p. 85, in Ferguson (1967).

Following Definition 3 Ferguson (1967) p. 50, φ∗ ∈ C(α − s) is said to be an extended Bayes test
if for every ǫ > 0 there is a prior distribution wǫ(θ) such that:

∫

Θ1

R(φ∗, θ)dwǫ(θ) ≤
∫

Θ1

R(φw,α
wap , θ)dwǫ(θ) + ǫ.

Theorem 2.10.3 in Ferguson (1967) p. 87 implies that the set of extended Bayes tests in C(α − s)
is essentially complete. This essential completeness means that for any other test φ ∈ C there is a
test φ∗ extended Bayes in C(α-s) such that:

R(φ∗, θ) ≤ R(φ, θ)

for all θ. Since φ is admissible and α-similar R(φ∗, θ) ≤ R(φ, θ) for all θ implies that R(φ∗, θ) =
R(φ, θ). Therefore, any admissible, α-similar test is risk equivalent to an extended Bayes test. This
implies that for any ǫ > 0 there is a probability measure wǫ such that

WAP(φ, wǫ) = WAP(φ∗, wǫ) ≥ WAP(φwǫ,α
WAP , wǫ) − ǫ

Consequently, any admissible, α-similar test is an extended WAP-similar test of level α.
Q.E.D.



ADMISSIBLE, SIMILAR TESTS: A CHARACTERIZATION 37

A.4. Lemma 3: WAP-similar tests with a boundedly complete, null-sufficient statistic.

Preliminaries: This section generalizes a well-known observation in the IV literature: maximizing
constrained average power is straightforward whenever there is a boundedly-complete, null-sufficient
statistic. Consider the following assumptions.

Assumption F1 (Null Sufficiency): There is a partition of the data X = (x1, x2) such that
the conditional density of x1 given x2 in the statistical model f(x1, x2; θ) satisfies:

(A.8) f(x1|x2; β0) ≡ f(x1|x2; θ) = f(x1|x2; θ′) ∀ θ, θ′ ∈ Θ0.

The statistic x2 arising from such partition of the data will be called a null-sufficient statistic.

It is well known that a null-sufficient statistic can be used to control the null rejection probabil-
ity of a test in a two-sided problem with a nuisance parameter [Ferguson (1967), Moreira (2003),
Andrews et al. (2006), Lehmann and Romano (2005)].

Let h(x2; θ) denote the marginal density of the null-sufficient statistic x2 based on the statistical
model f(x1, x2; β, π).

Assumption F2: (Bounded Completeness): For any bounded measurable function m : X2 →
R, the marginal densities of the null sufficient statistic are such that:

∫
m(x2)h(x2; θ)dx2 = 0, ∀ θ ∈ Θ0 =⇒ m(x2) = 0,

except, perhaps, in a set that has zero measure under every element of the collection {h(·, θ)}θ∈Θ0 .14

Theorem 4.3.1 in Lehmann and Romano (2005) provides a sufficient condition to guarantee that a
family of distributions is complete, and thus, boundedly complete. In the IV example studied in
this paper, it will be sufficient to show that the set Θ0 contains a rectangle of the same dimension
as the null-sufficient statistic.

Bounded completeness will be used to show that all similar tests must be “conditionally” similar.
This is a well-known result in the theory of statistical hypothesis testing. See Theorem 4.3.2 in
Lehmann and Romano (2005).

Description: Lemma 3 will show that under assumptions F1, F2 the test that rejects whenever

(A.9) φ∗(x1, x2) ≡ f∗
w1

(x1, x2)/f(x1|x2; β0) > c(x2; α),

is an element of

M(w1) ≡ arg min
φ∈C(α-s)

∫

Int Θ1

R(φ, θ)dw1(θ)

provided c(x2; α) is the 1 − α quantile of z(X1, x2) with X1 ∼ f(x1|x2; β0). This is a well-known
result and we reproduce it for the sake of completeness.

Relevance of Lemma 3: Lemma 3 implies that the tests in (A.9) are constrained weighted aver-
age power maximizers. This property has been discussed in Andrews, Moreira, and Stock (2004),
Chernozhukov et al. (2009). Lemma 3 combined with Lemma 2c implies that the tests in (A.9) are

14See Lehmann and Romano (2005) p. 115 for the definition of bounded completeness.
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admissible in the class of all tests.

Lemma 3: Let φ∗ be defined as in (A.9) and let c(·; α) be measurable. Under Assumptions F1,
F2 φ∗ ∈ M(w1); that is, φ∗ minimizes average risk inside the class of α-similar tests.

Proof: Throughout this proof we assume that X = X1 × X2. Fubini’s theorem (L2a-Step 1) and
Theorem 4.3.2 in Lehmann and Casella (1998) implies that φ∗ ∈ M(w1) if and only if φ∗ solves the
problem:

min
φ∈C

∫

X

(1 − φ(x))f∗
1 (x)dx

∫

X1(x2)

φ(x1, x2)f(x1|x2)dx1 = α

except, perhaps, for x2 that belong to a set of measure zero under the marginal density of h(x2, θ)
for all θ ∈ Θ0. Re-write the objective function as

max
φ∈C

∫

X

φ(x)f∗
1 (x)dx.

The product structure of X and the linearity of the integral allows a further expansion of the
previous equation:

max
φ∈C

∫

X2

(∫

X1

φ(x1, x2)f∗
1 (x1, x2)dx1

)
dx2.

Note first that the Neyman Pearson Lemma in Ferguson (1967) p. 204 implies that for a fixed x2

the WAP test φ∗(x1, x2) solves the problem

max
φ∈C

∫

X1

φ(x1, x2)f∗
1 (x1, x2) dx1

subject to
∫

X1

φ(x1, x2)f(x1|x2)dx1 = α.

except, perhaps, for x2 that belong to a set of measure zero under every h(x2, θ), θ ∈ BdΘ0. Hence,
to show that φ∗(x1, x2) ∈ M(w1) it only remains to prove that φ∗(x1, x2) is measurable. That
is, φ∗(x1, x2) ∈ C(α-s). Assumption F0 implies that φ∗(x1, x2) is continuous in x1, for every x2.
Furthermore, since c(·, α) is measurable, then φ∗(x1, x2) is measurable in x2, for every x1. Therefore,
φ∗(x1, x2) is a Carathéodory function, as defined in Aliprantis and Border (2006), p. 153. Since the
sample space X is separable (by assumption) and metrizable (for it is a subset of a euclidean space),
Lemma 4.5.1 in Aliprantis and Border (2006) p. 153 implies φ∗ : X → [0, 1] is measurable. Q.E.D.

A.5. Continuity of the critical value function

Measurability is required for the proof of Theorem 1. This subsection provides two sufficient
conditions that imply the continuity of c(·; α) (and hence, its measurability).

Let f(x; θ) denote the statistical model. Consider the following auxiliary assumptions:

Assumption F3: There exists a function g(θ) such that:

f(x; θ) ≤ g(θ) ∀ x,
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and
∫

θ
g(θ)dw(θ) < ∞.

Assumption F4: f(x1|x2; β0) > 0 for every (x1, x2) and f(x1|x2; β0) is continuous in (x1, x2).

Assumptions F0, F3, F4 imply that c(x2; α) is continuous.

Proof: Note first that Assumption F0 implies that f∗
w(x) is sequentially continuous in x. To see

this, consider any sequence xn → x. Assumption F0 i) implies that f(xn; θ) → f(x; θ) for almost
every θ ∈ Θ. Since the weight function w(θ) is assumed to satisfy f∗

w(x) < ∞ for every x then:

∣∣∣f∗
w(xn) − f∗

w(x)
∣∣∣ =

∣∣∣
∫

Θ

f(xn; θ)dw(θ) −
∫

Θ

f(x; θ)dw(θ)
∣∣∣

≤
∫

Θ

∣∣∣f(xn; θ) − f(x; θ)
∣∣∣dw(θ).

By Assumption F3, the Dominated Convergence Theorem applies and we can conclude that
∫

Θ

∣∣∣f(xn; θ) − f(x; θ)
∣∣∣dw(θ) → 0.

Consequently, f∗
w(xn) → f∗

w(x). Furthermore, Assumption F4 implies that the test statistic:

z(x1, x2) = fw(x1, x2)/f(x1|x2; β0)

is continuous in (x1, x2).

Let x2,n → x2 and let X1,n ∼ f(x1|x2,n; β0). Consider the sequence of random variables.

z(X1,n, x2,n).

By Scheffe’s theorem and the continuity of f(x1|x2; β0) at x2, X1,n → X ∼ f(x1|x2; β0). Therefore,

the random vector (X1,n, x2,n)
d→ (X, x2). The continuous mapping theorem implies that

z(X1,n, x2,n)
d→ z(X1, x2).

Lemma 21.2 in Van der Vaart (2000) implies c(x2,n; α) → c(x2; α) for any sequence x2,n → x2.
Hence, the critical value function is continuous and, consequently, measurable.


