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We develop a test for weak instruments in linear instrumental variables regression that is robust to
heteroscedasticity, autocorrelation, and clustering. Our test statistic is a scaled nonrobust first-stage F
statistic. Instruments are considered weak when the two-stage least squares or the limited information
maximum likelihood Nagar bias is large relative to a benchmark. We apply our procedures to the estimation
of the elasticity of intertemporal substitution, where our test cannot reject the null of weak instruments in
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1. INTRODUCTION

This article proposes a simple test for weak instruments that
is robust to heteroscedasticity, serial correlation, and clustering.
Staiger and Stock (1997) and Stock and Yogo (2005) developed
widely used tests for weak instruments under the assumption
of conditionally homoscedastic serially uncorrelated model er-
rors. However, applications with heteroscedasticity, time series
autocorrelation, and clustered panel data are common. Our pro-
posed test provides empirical researchers with a new tool to
assess instrument strength for those applications.

The practical relevance of heteroscedasticity in linear instru-
mental variable (IV) regression has been highlighted before by
Antoine and Lavergne (2012), Chao and Newey (2012), and
Hausman et al. (2012). We show, more generally, that depar-
tures from the conditionally homoscedastic serially uncorrelated
framework affect the weak instrument asymptotic distribution
of both the two-stage least squares (TSLS) and the limited infor-
mation maximum likelihood (LIML) estimators. Consequently,
heteroscedasticity, autocorrelation, and/or clustering can further
bias estimators and distort test sizes when instruments are po-
tentially weak. At the same time, the first stage may falsely
indicate that instruments are strong.

Under strong instruments, both TSLS and LIML are asymp-
totically unbiased, while such is generally not the case when
instruments are weak. We follow the standard Nagar (1959)
methodology to derive a tractable proxy for the asymptotic
estimator bias that is defined for both TSLS and LIML. Our
procedure tests the null hypothesis that the Nagar bias is large
relative to a “worst-case” benchmark. Our benchmark coincides
with the ordinary least squares (OLS) bias benchmark when the
model errors are conditionally homoscedastic and serially un-
correlated, but differs otherwise.

Our proposed test statistic, which we call the effective F statis-
tic, is a scaled version of the nonrobust first-stage F statistic. The
null hypothesis for weak instruments is rejected for large values
of the effective F. The critical values depend on an estimate
of the covariance matrix of the OLS reduced form regression

coefficients, and on the covariance matrix of the reduced form
errors, which can be estimated using standard procedures.

We consider two different testing procedures: generalized and
simplified; both are asymptotically valid. Critical values for both
procedures can be calculated either by Monte Carlo methods or
by a curve-fitting methodology by Patnaik (1949). The gener-
alized testing procedure applies to both TSLS and LIML, and
has increased power, but is computationally more demanding.
In contrast, the simplified procedure applies only to TSLS. The
simplified procedure is conservative, because it protects against
the worst type of heteroscedasticity, serial correlation, and/or
clustering in the second stage.

Empirical researchers frequently report the robust F statistic
as a simple way of adjusting the Staiger and Stock (1997) and
Stock and Yogo (2005) pretests for heteroscedasticity, serial cor-
relation, and clustering, and compare them to the homoscedastic
critical values. To the best of our knowledge, there is no theoret-
ical or analytical support for this practice, as cautioned in Baum,
Schaffer, and Stillman (2007). Our proposed procedures adjust
the critical values. While our proposed test statistic corresponds
to the robust F statistic in the just identified case, it differs in
the overidentified case.

Our baseline implementation tests the null hypothesis that
the Nagar bias exceeds 10% of a“worst-case” bias with a size
of 5%. The simplified procedure for TSLS has critical values
between 11 and 23.1 that depend only on the covariance ma-
trix of the first-stage reduced form coefficients. Thus, a simple,
asymptotically valid rule of thumb is available for TSLS that
rejects when the effective F is greater than 23.1.

We apply weak instrument pretests to a well-known empirical
example, the IV estimation of the Elasticity of Intertemporal
Substitution (EIS; Campbell 2003; Yogo 2004). Our empirical
results are consistent with Yogo’s (2004) finding that the EIS
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is small and close to zero. However, for several countries in
our sample, conditionally homoscedastic serially uncorrelated
pretests indicate strong instruments, while our proposed test
cannot reject the null hypothesis of weak instruments.

There is a large literature on inference when IVs are weak;
see Stock, Wright, and Yogo (2002), and Andrews and Stock
(2006) for overviews. Our article is closest to Staiger and Stock
(1997) and Stock and Yogo (2005). Zhan (2010) provided an-
other interesting approach, which, unlike ours, proposes to test
the null hypothesis of strong instruments. Bun and de Haan
(2010) pointed out the invalidity of pretests based on the first-
stage F statistic in two particular examples of nonhomoscedastic
and serially correlated errors, but do not provide a valid pretest.

Robust methods for inference about the coefficients of a
single endogenous regressor when IVs are weak and errors
are heteroscedastic and/or serially correlated are also available
(Andrews and Stock 2006; Kleibergen 2007). A pretest for
weak instruments followed by standard inference procedures
can be less computationally demanding, and the use of this two-
stage decision rule is widespread because of its simplicity. We
therefore view this article as complementary to robust inference
methods.

It is well known that pretests can induce uniformity prob-
lems (Leeb and Poetscher 2005; Guggenberger 2010a,b). How-
ever, Stock and Yogo (2005) showed that in the conditionally
homoscedastic and serially uncorrelated case the first-stage F
statistic can be used to control the Wald test size distortion.
In this case, uniformity problems are therefore not a first-order
concern.

The rest of the article is organized as follows. Section 2 intro-
duces the model and presents the generalized and simplified test-
ing procedures. Section 3 derives asymptotic distributions and
shows that conditional heteroscedasticity and serial correlation
can effectively weaken instruments in an illustrative example.
Section 4 derives the expressions for the TSLS and LIML Nagar
biases and describes the test statistic and critical values. Section
5 discusses the implementation of the critical values by Monte
Carlo simulation and Patnaik’s (1949) methodology. Section 6
applies the pretesting procedure to the IV estimation of the EIS.
Section 7 concludes. All proofs are collected in the Appendix.

2. MODEL AND SUMMARY OF TESTING
PROCEDURE

2.1 Model and Assumptions

We consider a linear IV model in reduced form with one
endogenous regressor and K instruments

y = Z�β + v1, (1)

Y = Z� + v2. (2)

The structural parameter of interest is β ∈ R, while � ∈ R
K de-

notes the unknown first-stage parameter vector. The sample size
is S and the econometrician observes the dataset {ys, Ys, Zs}Ss=1.
We denote the observations of the outcome variable, the endoge-
nous regressor, and the vector of instruments by ys , Ys , and Zs ,
respectively. The unobserved reduced form errors have realiza-

tions vjs , j ∈ {1, 2}. We stack the realized variables in matrices
y ∈ R

S , Z ∈ R
S×K , and vj ∈ R

S , j ∈ {1, 2}.
Our analysis extends straightforwardly to a model with ad-

ditional exogenous regressors. In the presence of additional ex-
ogenous regressors, TSLS and LIML estimators are unchanged
if we replace all variables by their projection errors onto those
exogenous regressors. TSLS and LIML are also invariant to nor-
malizing the instruments to be orthonormal. We can therefore
assume without loss of generality that there are no additional ex-
ogenous regressors, and that Z′Z/S = IK . When implementing
the pretest, an applied researcher needs to normalize the data.

We model weak instruments by assuming that the IV first-
stage relation is local to zero, following the modeling strategy
in Staiger and Stock (1997).

Assumption L�. (Local to Zero) � = �S = C/
√

S, where
C is a fixed vector C ∈ R

K .
Additional high-level assumptions allow us to derive asymp-

totic distributions for IV estimators and F statistics. TSLS and
LIML estimators and first-stage F statistics depend on the statis-
tics Z′vj /

√
S, and estimates of the covariance matrices W and

� as defined below.
Assumption HL. (High Level) The following limits hold as

S → ∞.

1.

(
Z′v1/

√
S

Z′v2/
√

S

)
d→ N2K (0, W) for some positive definite

W =
(

W1 W12

W′
12 W2

)
.

2. [v1, v2]′[v1, v2]/S
p→ � for some positive definite

� ≡
(

ω2
1 ω12

ω12 ω2
2

)
.

3. There exists a sequence of positive definite estimates
{Ŵ(S)}, measurable with respect to {ys, Ys, Zs}Ss=1, such that

Ŵ(S)
p→ W as S → ∞.

Assumption HL is satisfied under various primitive conditions
on the joint distribution of (Z, v1, v2); see supplementary mate-
rials C.2, for examples. Assumption HL.1 is satisfied as long as
a central limit theorem holds for Z′vj /

√
S. Assumption HL.2

holds under a weak law of large numbers for [v1, v2]′[v1, v2]/S.
Assumption HL.3 assumes that we can consistently estimate the
covariance matrix W from the observable variables.

Assumption HL allows for a general form of W, similarly
to the models in Müller (2011) and Mikusheva (2010). This
is our key generalization from the model in Staiger and Stock
(1997), who required W to have the form � ⊗ IK . The Kro-
necker form arises naturally only in the context of a condi-
tionally homoscedastic serially uncorrelated model. Our gen-
eralization is therefore relevant for practitioners working with
heteroscedastic, time series, or panel data, and it is consequential
for econometric practice.

2.2 Implementing the Testing Procedure

2.2.1 Generalized Test. The generalized testing procedure
can be implemented in four simple steps. When rejecting the
null, the empirical researcher can conclude that the estimator
Nagar bias is small relative to the benchmark. Under the null
hypothesis, the Nagar bias of TSLS or LIML is greater than a
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fraction τ of the benchmark. Critical values for the effective F
statistic depend on the desired threshold τ , the desired level of
significance α, and estimates for the matrices Ŵ, �̂. Critical
values also vary between TSLS and LIML. In our numerical
results, we focus on τ = 10% and α = 5%.

1. If there are additional exogenous regressors, replace all vari-
ables by their projection residuals onto those exogenous re-
gressors. Normalize instruments to be orthonormal.

2. Obtain Ŵ as the estimate for the asymptotic covariance ma-
trix of the reduced form OLS coefficients. Standard statis-
tical packages estimate this matrix (divided by the sample
size S) under different distributional assumptions. For cross-
sectionally heteroscedastic applications, use a heteroscedas-
ticity robust estimate; for time series applications, use a
heteroscedasticity and autocorrelation consistent (HAC) es-
timate; and for panel data applications, use a “clustered”
estimate.

3. Compute the test statistic, the Effective F Statistic

F̂eff ≡ 1

S

Y′ZZ′Y
tr(Ŵ2)

, (3)

where tr(·) denotes the trace operator.
4. Estimate the effective degrees of freedom

K̂eff ≡ [tr(Ŵ2)]2(1 + 2x)

tr(Ŵ′
2Ŵ2) + 2xtr(Ŵ2) max eval(Ŵ2)

, (4)

where

x = Be(Ŵ, �̂)/τ for e ∈ {TSLS, LIML}. (5)

Here max eval(Ŵ2) denotes the maximum eigenvalue of the
lower diagonal K × K block of the matrix Ŵ. The function
Be(Ŵ, �̂) is closely related to the supremum of the Nagar
bias relative to the benchmark; see Theorem 1.2. The numer-
ical implementation of Be(Ŵ, �̂) is discussed in Remark 5,
Theorem 1. A fast numerical MATLAB routine is available
for the function Be(Ŵ, �̂).
The generalized test rejects the null hypothesis of weak in-
struments when F̂eff exceeds a critical value that can be ob-
tained by either of the following procedures:
(a) Monte Carlo methods, as described in Section 5.
(b) Patnaik’s (1949) curve-fitting methodology; Patnaik

critical values obtain as the upper α quantile of
χ2

K̂eff
(xK̂eff)/K̂eff, where χ2

K̂eff
(xK̂eff) denotes a noncen-

tral χ2 distribution with K̂eff degrees of freedom and
noncentrality parameter xK̂eff. Table 1 tabulates 5% Pat-
naik critical values.

2.2.2 Simplified Test. A simplified conservative version of
the test is available for TSLS. The simplified procedure follows
the same steps, but sets x = 1/τ in Step 4. For a given effective
degrees of freedom K̂eff , the simplified 5% critical value can
be conveniently read off Table 1. For instance, the critical value
for a threshold τ = 10% can be found in the column with x =
10. The simplified test does not require numerical evaluation
of Be(Ŵ, �̂), for it uses the bound BTSLS(Ŵ, �̂) ≤ 1, proved
in Theorem 1.3. The matrix Ŵ enters only through the lower
K × K block Ŵ2.

Table 1. Critical values: upper 5% quantile of χ2
Keff

(xKeff)/Keff

Keff x = 3.33 x = 5 x = 10 x = 20

1 12.05 15.06 23.11 37.42
2 9.57 12.17 19.29 32.32
3 8.53 10.95 17.67 30.13
4 7.92 10.23 16.72 28.85
5 7.51 9.75 16.08 27.98
6 7.21 9.40 15.62 27.35
7 6.98 9.14 15.26 26.86
8 6.80 8.92 14.97 26.47
9 6.65 8.74 14.73 26.15

10 6.52 8.59 14.53 25.87
11 6.41 8.47 14.36 25.64
12 6.32 8.36 14.21 25.44
13 6.24 8.26 14.08 25.26
14 6.16 8.17 13.96 25.10
15 6.10 8.10 13.86 24.96
16 6.04 8.03 13.77 24.83
17 5.99 7.96 13.68 24.71
18 5.94 7.91 13.60 24.60
19 5.89 7.85 13.53 24.50
20 5.85 7.80 13.46 24.41
21 5.81 7.76 13.40 24.33
22 5.78 7.72 13.35 24.25
23 5.74 7.68 13.29 24.18
24 5.71 7.64 13.24 24.11
25 5.68 7.61 13.20 24.05
26 5.66 7.57 13.15 23.98
27 5.63 7.54 13.11 23.93
28 5.61 7.51 13.07 23.87
29 5.58 7.49 13.04 23.82
30 5.56 7.46 13.00 23.77

NOTE: Critical values computed by Patnaik (1949) method. For generalized and simplified
testing procedures, estimate Keff as in Equation (4). For a Nagar bias threshold τ (e.g.,
τ = 10%), set x = 1/τ for the simplified procedure. For the generalized procedure, set
x = Be(Ŵ, �̂)/τ ; see Step 4 in Section 2.2.1.

2.2.3 Comparison With Stock and Yogo (2005) Critical
Values. We compare the generalized and simplified TSLS crit-
ical values to those proposed by Stock and Yogo (2005) for the
case when the data are conditionally homoscedastic and serially
uncorrelated. For this comparison, we assume W = � ⊗ IK and
W and � known, as in Stock and Yogo (2005). It then follows
from (3) and (4) that the effective and nonrobust F statistics are
equal, and that the effective number of degrees of freedom Keff

equals the number of instruments K.
Figure 1 shows the 5% TSLS critical value for testing the

null hypothesis that the asymptotic estimator bias exceeds 10%
of the benchmark, the 5% critical value for the corresponding
simplified test, and the Stock and Yogo (2005) 5% critical value
for testing the null hypothesis that the TSLS bias exceeds 10%
of the OLS bias. The Stock and Yogo (2005) critical value is de-
fined when the degree of overidentification is at least two and we
therefore show critical values for 3 ≤ K ≤ 30. The TSLS criti-
cal value increases from 8.53 for K = 3 to 12.27 for K = 30. By
comparison, the Stock and Yogo (2005) critical value increases
from 9.08 for K = 3 to 11.32 for K = 30. The simplified TSLS
critical value is strictly larger than the TSLS critical value for
all K shown, illustrating that the simplified test can be strictly
less powerful than the generalized procedure. The difference
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Figure 1. TSLS and simplified 5% critical values assuming condi-
tional homoscedasticity, no serial autocorrelation, and known � and
W = � ⊗ IK . Under these assumptions, the effective number of de-
grees of freedom Keff equals the number of instruments K, and the
effective F statistic equals the nonrobust first-stage F statistic. The null
hypothesis is that the estimator Nagar bias exceeds 10% of the bench-
mark. Critical values are computed using the Patnaik (1949) method-
ology. For comparison, we show Stock and Yogo (2005) 5% critical
values of the null hypothesis that the asymptotic TSLS bias exceeds
10% of the OLS bias. The online version of this figure is in color.

between the simplified critical value and the TSLS and Stock
and Yogo (2005) critical values decreases as K becomes large.

3. ASYMPTOTIC DISTRIBUTIONS AND AN EXAMPLE

3.1 Illustrative Example

A simple example illustrates that heteroscedasticity and serial
correlation impact the entire asymptotic distribution of both
TSLS and LIML estimators, and can weaken the performance
of the estimators. In this example, the first-stage F statistic
rejects the null hypothesis of weak instruments too often, while
the effective F statistic allows for testing for weak instruments
with asymptotically correct size.

For the sake of exposition, assume β = 0. Also assume that
the departure from the conditionally homoscedastic serially un-
correlated framework takes the particularly simple form

W = a2(� ⊗ IK ), (6)

where a is a scalar parameter and for a = 1 the expression (6)
reduces to the conditionally homoscedastic case.

Remark 1. We can generate example (6) with a purely
conditionally heteroscedastic data-generating process. Let
{Zs , ṽ1s , ṽ2s} identically and independently distributed (iid).
Let instruments independent with E[Zks] = 0, E[Z2

ks] = 1,
E[Z3

ks] = 0, E[Z4
ks] = a2. Let (ṽ1s , ṽ2s) ∼ N2((0, 0)′,�) in-

dependently of Zs . Let the reduced form errors v1s =
ṽ1s�

K
k=1Zks , v2s = ṽ2s�

K
k=1Zks . Then E([v1s , v2s][v1s , v2s]′) =

� and E([v1s , v2s][v1s , v2s]′ ⊗ ZsZ′
s) = a2� ⊗ IK . HL.1, HL.2,

and (6) follow from the central limit theorem and the weak law
of large numbers.

Remark 2. We can alternatively generate (6) with a
simple serially correlated data-generating process. As-
sume that instruments and reduced form errors follow
independent AR(1) processes Zks+1 = ρZZks + εks+1, k =

1, . . . , K , and vjs+1 = ρvvjs + ηjs+1, j = 1, 2. Let εks and
ηjs serially uncorrelated with mean zero, E(εsε

′
s) = (1 −

ρ2
Z) × IK and E[η1s , η2s]′[η1s , η2s] = (1 − ρ2

V ) × �. Then
E[v1s , v2s][v1s , v2s]′ = � and E(ZsZ′

s) = IK . HL.1, HL.2 fol-
low from the central limit theorem and the weak law of
large numbers. Expression (6) holds with a = (1 + ρvρZ)/(1 −
ρZρv). Serial correlation in both the instruments and the errors
is required for a �= 1. As a numerical example, moderate serial
correlation of ρv = ρZ = 0.5 gives rise to a = 1.67.

With Assumptions L� and HL, the asymptotic distribution of
the TSLS estimator

β̂TSLS ≡ [Y′Z(Z′Z)−1Z′Y]−1Y′Z(Z′Z)−1Z′v1 (7)

= ω1

ω2

[(
C

aω2
+ Z′v2/

√
S

aω2

)′ (
C

aω2
+ Z′v2/

√
S

aω2

)]−1

(8)

×
(

C
aω2

+ Z′v2/
√

S

aω2

)′
Z′v1/

√
S

aω1
(9)

d→ ω1

ω2
[ψ ′

2ψ2]−1ψ ′
2ψ1, (10)

where(
ψ1
ψ2

)
∼ N2K

((
0K

C/(a ω2)

)
,

(
1 ω12/(ω1ω2)

ω12/(ω1ω2) 1

)
⊗ IK

)
.

The asymptotic TSLS distribution depends only on the el-
ements of the noncentral Wishart matrix [ψ1,ψ2]′[ψ1,ψ2].
Hence, the vector of first-stage coefficients C and the parameter
a enter into the asymptotic distribution in (10) only through the
noncentrality parameter C′C/a2ω2

2, so C′C/a2ω2
2 summarizes

instrument strength.
In this example, heteroscedasticity and serial correlation af-

fect the biases and test size distortion of TSLS and LIML esti-
mators in the same way as a weaker first-stage relationship. The
conditionally homoscedastic serially uncorrelated case obtains
for a = 1, so the TSLS estimator is asymptotically distributed
as if the errors were conditionally homoscedastic serially un-
correlated, and the first-stage coefficients were reduced by a
factor of a. We prove an analogous result for LIML in the
Appendix.

Consider a null hypothesis for weak instruments of the form
(C′C/ω2

2a
2K) < x. In the presence of conditional heteroscedas-

ticity or serial correlation of the form (6), the first-stage F statis-
tic is asymptotically distributed as a2χ2

K (C′C/ω2
2a

2)/K . As a
increases without bound, the noncentrality parameter goes to
zero and instruments become arbitrarily weak, but the first-
stage F statistic diverges to infinity almost surely. On the other
hand, the effective F statistic is asymptotically distributed as a
χ2

K (C′C/ω2
va

2)/K , so we can reject the null hypothesis of weak
instruments with confidence level α whenever F̂eff exceeds the
upper α quantile of χ2

K (x × K)/K .
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3.2 Asymptotic Distributions

Definition 1. Denote the projection matrix onto Z by PZ =
ZZ′/S and the complementary matrix by MZ = IS − PZ.

1. The TSLS estimator

β̂TSLS ≡ (Y′PZY)−1(Y′PZy). (11)

2. The limited information likelihood (LIML) estimator

β̂LIML = (Y′(IS − kLIMLMZ)Y)−1(Y′(IS − kMZ)y),

(12)

where kLIML is the smallest root of the determinantal equation

|[y, Y]′[y, Y] − k[y, Y]′MZ[y, Y]| = 0. (13)

3. The nonrobust first-stage F statistic

F̂ ≡ Y′PZY

K ω̂2
2

, (14)

where ω̂2
2 ≡ (Y−PZY)′(Y−PZY)

S−K−1 .
4. The robust first-stage F statistic

F̂r ≡ Y′ZŴ−1
2 Z′Y

K × S
, (15)

where Ŵ2 is the lower diagonal K × K block of the matrix
Ŵ.

5. The effective first-stage F statistic

F̂eff ≡ Y′PZY

tr(Ŵ2)
. (16)

Lemma 1 derives asymptotic distributions for these statistics,
generalizing Theorem 1 in Staiger and Stock (1997).

Lemma 1. Write σ 2
1 = ω2

1 − 2βω12 + β2ω2
2, σ12 = ω12 −

βω2
2, σ 2

2 = ω2
2, and � =

(
σ 2

1 σ12

σ12 σ 2
2

)
. Under Assumptions L�

and HL, the following limits hold jointly as S → ∞.

1. β̂TSLS − β
d→ β∗

TSLS = (γ 2
′γ 2)−1γ 2

′(γ 1 − βγ 2).

2. β̂LIML − β
d→ β∗

LIML = (γ ′
2γ 2 − κLIMLω2

2)−1(γ ′
2(γ 1 −

βγ 2) − κLIML(ω12 − βω2
2)),

where κLIML is the smallest root of |[γ 1 − βγ 2, γ 2]′[γ 1 −
βγ 2, γ 2] − κ�| = 0.

3. F̂
d→ F ∗ ≡ γ 2

′γ 2/Kω2
2.

4. F̂r
d→ F ∗

r ≡ γ 2
′W−1

2 γ 2/K .

5. F̂eff
d→ F ∗

eff ≡ γ 2
′γ 2/tr(W2),

where (
γ 1
γ 2

)
∼ N2K

((
βC
C

)
, W
)

. (17)

Proof. See the Appendix. �
The limiting distributions are functions of a multivariate nor-

mal vector whose distribution depends on the parameters (β, C),
and on the matrix W. We treat the asymptotic distributions in
Lemma 1 as a limiting experiment in the sense of Müller (2011),
and use it to analyze inference problems regarding (β, C).

4. TESTING THE NULL HYPOTHESIS OF WEAK
INSTRUMENTS

We base our null hypothesis of weak instruments on a bias
criterion. We follow the standard methodology in Nagar (1959),
and approximate the asymptotic TSLS and LIML distributions
to obtain the Nagar bias. Under standard asymptotics, the Nagar
bias for both estimators is zero everywhere in the parameter
space, but under weak instrument asymptotics, the bias may
be large in some regions of the parameter space. We consider
instruments to be weak when the estimator Nagar bias is large
relative to a benchmark, extending the OLS bias criterion in
Stock and Yogo (2005).

4.1 Nagar Approximation

Theorem 1. (Nagar Approximation) Let W ∈ R
2K×2K pos-

itive definite. Write C ∈ R
K as C = ‖C‖C0 and let μ2 ≡

||C||2/tr(W2). Define S1 = W1 − 2βW12 + β2W2, S12 =
W12 − βW2, S2 = W2, and the benchmark BM(β, W) ≡√

tr(S1)/tr(S2). We write SK−1 for the K − 1 dimensional unit
sphere.

1. For e ∈ {TSLS, LIML}, the Taylor expansion of β∗
e around

μ−1 = 0 gives the Nagar (1959) bias

Ne(β, C, W,�) = μ−2ne(β, C0, W,�), (18)

with

nTSLS(β, C0, W,�) = tr(S12)

tr(S2)

[
1 − 2

C′
0S12C0

tr(S12)

]
, (19)

nLIML(β, C0, W,�)

=
tr(S12) − σ12

σ 2
1

tr(S1) − C′
0(2S12 − σ12

σ 2
1

S1)C0

tr(S2)
, (20)

2. For e ∈ {TSLS, LIML}:

Be(W,�) ≡ sup
β∈R,C0∈SK−1

( |ne(β, C0, W,�)|
BM(β, W)

)
< ∞.

(21)

3. BTSLS(W,�) ≤ 1.

Proof. See the Appendix. �
Remark 3. The Nagar bias is the bias of an approximating

distribution. It equals the expectation of the first three terms in
the Taylor series expansion of the asymptotic estimator distri-
bution under weak instrument asymptotics. It is therefore al-
ways defined and bounded for both TSLS and LIML. While the
asymptotic estimator bias may not always exist, our test is still
performing well. Under the null hypothesis, the Nagar bias can
be large, but under the alternative hypothesis, the Nagar bias is
small; see Section 4.2. Under certain conditions, we can also
prove that the Nagar bias approximates the asymptotic estima-
tor bias as the concentration parameter μ2 goes to infinity; see
supplementary materials C.1.

Remark 4. We interpret the benchmark BM(β, W) =√
tr(S1)/tr(S2) as a “worst-case” bias. An ad hoc approxima-

tion of E[β∗
TSLS] as a ratio of expectations as in Staiger and
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Stock (1997) helps convey the intuition:

E[β∗
TSLS] ≈ tr(S12)

tr(S2)[1 + μ2]

≈ 1

[1 + μ2]

tr(S12)√
tr(S2)

√
tr(S1)

√
tr(S1)

tr(S2)
. (22)

The first factor is maximized when instruments are completely
uninformative and μ2 = 0, while the second factor is maximized
when first- and second-stage errors are perfectly correlated (Liu
and Neudecker 1995).

Remark 5. In the implementation of our generalized testing
procedure, we use the function Be(W,�) to bound the Nagar
bias relative to the benchmark. We provide a fast and accurate
numerical MATLAB routine for Be(W,�). For any given value
of the structural parameter β, we compute the supremum over
C0 ∈ SK−1 analytically using matrix diagonalization. We then
compute the limits of supC0∈SK−1 |ne(β, C0, W,�)|/BM(β, W)
as β → ±∞. Finally, we numerically maximize the function
supC0∈SK−1 |ne(β, C0, Ŵ, �̂)|/BM(β,�) over β ∈ [−X,X],
where X ∈ R

+ is chosen sufficiently large.

4.2 Null Hypothesis

For a given threshold τ ∈ [0, 1] and matrix W ∈ R
2K×2K , we

define the null and alternative hypotheses for e ∈ {TSLS, LIML}
H 0

e : μ2 ∈ He(W,�) versus H 1
e : μ2 /∈ He(W,�), (23)

where

He(W,�) ≡
{

μ2 ∈ R+ : sup
β∈R,C0∈SK−1

|Ne(β,μ
√

trMW2C0, W,�)|
BM(β, W)

> τ

}
. (24)

Under the null hypothesis, the Nagar bias exceeds a fraction
τ of the benchmark for at least some value of the structural
parameter β and some direction of the first-stage coefficients
C0. On the other hand, under the alternative, the Nagar bias is
at most a fraction τ of the benchmark for any values (β, C0).

4.3 Testing Procedures

We base our test on the statistic F̂eff , which is asymptotically
distributed as a quadratic form in normal random variables with
mean 1 + μ2; see Lemma 1. For a survey of this class of distri-
butions, see Johnson, Kotz, and Balakrishnan (1995, chap. 29).
Denote by F−1

C,W2
(α), the upper α quantile of the distribution

γ ′
2γ 2/tr(W2), where γ 2 ∼ NK (C, W2) and let

c(α, W2, x) ≡ sup
C∈RK

{
F−1

C,W2
(α)1C′C/tr(W2)<x

}
(25)

1A(·) denotes the indicator function over a set A. We base
the generalized test on the observation that He(W,�) =
[0, Be(W,�)/τ ). The generalized procedure is applicable to
both TSLS and LIML, and it rejects the null hypothesis H 0

e

whenever

F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ ). (26)

Lemma 2. Under Assumptions L� and HL, the generalized
procedure is pointwise asymptotically valid, that is

sup
He(W,�)

lim
S→∞

P

(
F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ )

)
≤ α.

Furthermore, provided that B(Ŵ, �̂) is bounded in probability

limμ2→∞limS→∞P
(
F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ

) = 1. (28)

Proof. See the Appendix. �
The inequality in Theorem 1.3 implies a simplified asymp-

totically valid test for TSLS, which rejects the null hypothesis
He(W,�) whenever

F̂eff > c(α, Ŵ2, 1/τ ). (29)

With c(α, Ŵ2, 1/τ ) ≥ c(α, Ŵ2, BTSLS(W,�)/τ ), the simpli-
fied procedure is asymptotically valid and weakly less powerful
than the generalized procedure. The simplified test is conser-
vative, in the sense that under the alternative hypothesis, the
TSLS Nagar bias is lower than the threshold for any degree of
dependence in the second stage.

5. COMPUTATION OF CRITICAL VALUES

We provide two simple methods to compute the critical value
c(α, W2, x). Our first method generates Monte Carlo critical
values cm(α, W2, x). We obtain estimates of F−1

C,W2
(α) as the

sample upper α point from a large number of draws from the
distribution of γ ′

2γ 2/tr(Ŵ2), and then maximize over a large set
of C, such that C′C/tr(W2) ≤ x.

The second procedure is based on a curve-fitting methodology
first suggested by Patnaik (1949). Patnaik (1949) and Imhof
(1961) approximated the critical values of a weighted sum of
independent noncentral chi-squared distributions by a central
χ2 with the same first and second moments. We analogously
approximate the distribution FC,W2 by a noncentral χ2 with
the same first and second moments. Our approximation errors
are therefore bounded by the original Patnaik errors through a
triangle inequality. We use

F−1
C,W2

(α) ≈ 1

Keff
F−1

χ2
Keff

(Keffμ2)
(α), (30)

where Keff is possibly fractional with

Keff = [tr(W2)]2 1 + 2μ2

tr
(
W2

2

)+ 2C′W2C
. (31)

There is a large literature that approximates distributions by
choosing a family of distributions and selecting the member
that fits best, often by matching lower order moments of the
original distribution (Satterthwaite 1946; Pearson 1959; Theil
and Nagar 1961; Grubbs 1964; Henshaw 1966; Conerly and
Mansfield 1988; Liu, Tang, and Zhang 2009). The noncentral
chi-squared distribution is a natural choice, because it is exact
in the homoscedastic case.

While it is hard to assess the accuracy of these curve-fitting
approximations analytically, they are often simple and numer-
ically highly accurate (Rothenberg 1984). We demonstrate the
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degree of accuracy of their approximations using numerical ex-
amples. In the supplementary materials B.1, we verify that the
approximation (30) is numerically as accurate as the original
central Patnaik distribution for the quadratic forms considered
in Imhof (1961); approximation errors are at most 0.7% points
in the important upper 15% tail of the distributions.

Numerical results, such as in Table 1, clearly indicate that
upper α quantiles of (30) are decreasing in Keff. Moreover, the
upper α quantile in (30) is nondecreasing in the noncentrality
parameter μ2 (Ghosh 1973). Taking the supremum over C with
C′C/tr(W2) < x suggests the Patnaik critical value.

Definition 2. (Patnaik Critical Value) Define the Patnaik
critical value as

cP (α, W2, x) ≡ F−1
(1/Keff)χ2

Keff
(xKeff)

(α), (32)

with the effective number of degrees of freedom

Keff ≡ tr(W2)2(1 + 2x)

tr
(
W2

2

)+ 2tr(W2) max eval(W2)x
. (33)

We numerically analyze the sizes of Monte Carlo and Pat-
naik critical values for benchmark parameter values α = 5%
and x = 10, and find that size distortions are small for
both methodologies. Monte Carlo critical values are com-
puted with 40,000 draws from γ ′

2γ 2/tr(W2), and we replace
the infinite set of vectors C s.t. C′C/tr(W2) < x by a fi-
nite set of size 500. We use code for FC,W2 (x) available
from Ruud (2000) (Imhof 1961; Koerts and Abrahamse 1969;
Farebrother 1990; Ruud 2000). For 400 matrices W2 from a
diffuse prior with K ∈ {1, 2, 3, 4, 5}, our numerical values for
maxC′C/trW2<x FC,W2 (cm) range between 4.77% and 5.26%, and
our numerical values for maxC′C/trW2<x FC,W2 (cP ) range be-
tween 5.00% and 5.02%. For further details and MATLAB
routines, see supplementary materials B.2–B.5.

Our generalized and simplified critical values differ from
those proposed by Stock and Yogo (2005) for the TSLS bias,
even when first- and second-stage errors are perfectly condition-
ally homoscedastic and serially uncorrelated. In this case, the
effective F statistic coincides with the Stock and Yogo (2005)
test statistic. We obtain different critical values because, unlike
them, we use an approximation to evaluate the weak instrument
TSLS bias. Moreover, estimating Ŵ and �̂ also generates differ-
ences in critical values. The difference between our generalized
TSLS critical values and analogous Stock and Yogo (2005) criti-
cal values becomes small as the number of instruments becomes
large.

In the supplementary materials B.6, we tabulate Stock and
Yogo (2005) 5% critical values for testing the null hypothesis
that the TSLS bias exceeds 10% of the OLS bias and our gen-
eralized and simplified critical values with a threshold of 10%
and size 5%, assuming conditional homoscedasticity and no se-
rial correlation. TSLS critical values are smaller than Stock and
Yogo (2005) critical values for K = 3, 4, but larger than Stock
and Yogo (2005) critical values for K ≥ 5. The difference be-
tween the TSLS and Stock and Yogo (2005) critical values
is always less than 1. The LIML critical values decline more
rapidly with the number of instruments than either the TSLS or
simplified critical values. The simplified critical values exceed

the generalized TSLS critical values, because they use a bound
that applies for any form of the matrix W.

6. EMPIRICAL APPLICATION: ESTIMATING THE
ELASTICITY OF INTERTEMPORAL SUBSTITUTION

We now apply our pretesting procedure to an empirical ex-
ample, and show that allowing for heteroscedasticity and time
series correlation can affect pretesting conclusions.

The literature has focused on estimating the linearized Euler
equation in two standard IV frameworks (Hansen and Singleton
1983; Hall 1988; Campbell and Mankiw 1989; Campbell 2003):

ct+1 = ν + ψrt+1 + ut+1 and E[Zt−1ut+1] = 0 (34)

rt+1 = ξ + (1/ψ)ct+1 + ηt+1 and E[Zt−1ηt+t ] = 0, (35)

where ψ is the EIS, ct+1 is consumption growth at time t + 1,
rt+1 is a real asset return, and ν is a constant. The vector of
instruments is denoted by Zt−1. We follow the preferred choice
of variables in Yogo (2004), using as rt the real return on the
short-term interest rate, and as instruments the nominal interest
rate, inflation, consumption growth, and the log dividend-price
ratio, all lagged twice. We use quarterly data from Yogo (2004).

The EIS determines an agent’s willingness to substitute con-
sumption over time. Its magnitude is important for understand-
ing the dynamics of consumption and asset returns (Epstein and
Zin 1989, 1991; Campbell 2003). While time-varying volatil-
ity can introduce additional bias into the estimation of the EIS
(Bansal and Yaron 2004), Yogo (2004) argued that under cer-
tain types of conditional heteroscedasticity the EIS can still be
identified.

Table 2 compares pretests for weak instruments for 11 coun-
tries. Panel A shows weak instrument pretests with the ex-post
real interest rate as the endogenous variable, while Panel B
shows weak instrument pretests with consumption growth as
the endogenous variable. The nonrobust first-stage F statistic
in column 1 is shown in bold whenever it exceeds the Stock
and Yogo (2005) critical value 10.27. This is the 5% critical
value for testing the null hypothesis that the TSLS bias exceeds
10% of the OLS bias under the assumption of conditional ho-
moscedasticity and no serial correlation. As in Yogo (2004),
this homoscedastic pretest indicates strong instruments in Panel
A, but cannot reject weak instruments in Panel B for almost all
countries in the sample.

The second and third columns report the HAC robust first-
stage F statistic and the effective F statistic computed with a
Newey–West kernel and six lags. We show 5% critical values
for TSLS, LIML, and simplified pretests for the null hypothesis
that the respective Nagar bias exceeds 10% of the “worst-case”
benchmark.

In panel A, we see that allowing for heteroscedasticity and
serial correlation changes the pretesting results for some coun-
tries, while for other countries all pretests yield the same con-
clusion. The effective F statistic can be smaller or larger than the
regular or robust F statistics. Simplified critical values always
exceed TSLS critical values. LIML critical values tend to be
smallest.

The results in Table 2(A) for the United States are particu-
larly striking. While the US regular F statistic clearly exceeds
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Table 2. Estimating the Elasticity of Intertemporal Substitution: Weak Instrument Pretests

Panel A: ct+1 = ν + ψrt+1 + ut+1 and E[Zt−1ut+1] = 0

Country Sample period F̂ F̂r F̂eff cSimp cTSLS cLIML ψ̂TSLS ψ̂LIML

USA 1947.3–1998.4 15.53 8.60 7.94 18.20 15.49 9.68 0.06 0.03
AUL 1970.3–1998.4 21.81 27.56 17.52 18.36 16.64 10.25 0.05 0.03
CAN 1970.3–1999.1 15.37 11.58 12.95 18.95 17.38 11.44 −0.30 −0.34
FR 1970.3–1998.3 38.43 41.67 40.29 19.51 17.01 12.89 −0.08 −0.08
GER 1979.1–1998.3 17.66 12.47 11.66 18.24 16.30 10.01 −0.42 −0.44
ITA 1971.4–1998.1 19.01 25.09 19.44 19.26 17.37 12.98 −0.07 −0.07
JAP 1970.3–1998.4 8.64 8.32 5.09 21.66 20.24 18.71 −0.04 −0.05
NTH 1977.3–1998.4 12.05 9.31 10.53 18.89 17.18 11.28 −0.15 −0.14
SWD 1970.3–1999.2 17.08 28.86 19.82 19.04 15.59 11.65 0.00 0.00
SWT 1976.2–1998.4 8.55 6.68 7.19 18.49 15.80 10.38 −0.49 −0.50
UK 1970.3–1999.1 17.04 11.78 7.65 20.18 18.72 14.57 0.17 0.16

Panel B: rt+1 = ξ + (1/ψ)ct+1 + ηt+1 and E[Zt−1ηt+1] = 0

Country Sample period F̂ F̂r F̂eff cSimp cTSLS cLIML ψ̂
−1
TSLS ψ̂

−1
LIML

USA 1947.3–1998.4 2.93 3.37 2.58 17.61 13.99 10.23 0.68 34.11
AUL 1970.3–1998.4 1.79 2.87 2.31 19.89 17.25 15.70 0.50 30.03
CAN 1970.3–1999.1 3.03 5.99 2.70 18.19 15.89 9.77 −1.04 −2.98
FR 1970.3–1998.3 0.17 0.39 0.22 19.83 18.08 14.09 −3.12 −12.38
GER 1979.1–1998.3 0.83 2.48 1.13 18.58 16.98 14.19 −1.05 −2.29
ITA 1971.4–1998.1 0.73 0.39 0.47 19.05 16.96 11.63 −3.34 −14.81
JAP 1970.3–1998.4 1.18 2.17 2.00 17.94 13.93 15.58 −0.18 −21.56
NTH 1977.3–1998.4 0.89 3.62 1.84 19.00 16.13 15.30 −0.53 −6.94
SWD 1970.3–1999.2 0.48 0.81 0.83 17.24 12.51 9.73 −0.10 −399.86
SWT 1976.2–1998.4 0.97 2.28 1.56 20.21 18.76 16.47 −1.56 −2.00
UK 1970.3–1999.1 2.52 3.95 2.55 17.94 15.64 14.50 1.06 6.21

NOTE: c is consumption growth and r is the ex-post real short-term interest rate. We instrument using twice lagged nominal interest rate, inflation, dividend-price ratio, and consumption
growth. HAC variance-covariance matrix Ŵ estimated with OLS and Newey-West kernel with six lags. F statistic in bold when it exceeds the critical value of 10.27. This is the 5%
critical value for testing the null hypothesis that the TSLS bias exceeds 10% of the OLS bias under the assumption of conditional homoscedasticity and no serial correlation (Stock and
Yogo 2005). We show simplified, TSLS, and LIML critical values cSimp = cP (5%, Ŵ2, 10), cTSLS = cP (5%, Ŵ2, 10 × BTSLS(Ŵ, �̂)), and cLIML = cP (5%, Ŵ2, 10 × BLIML(Ŵ, �̂)).

Critical values are in bold when exceeded by F̂eff . ψ̂TSLS, ψ̂LIML, (̂1/ψ)TSLS, and (̂1/ψ)LIML are TSLS and LIML estimates of the EIS and its inverse.

the homoscedastic threshold of 10.27, the robust and effective
F statistics are significantly smaller. The effective F does not
exceed the simplified, TSLS, or LIML critical values, so we
cannot reject the null hypothesis of weak instruments under
heteroscedasticity and serial correlation.

Panel B shows weak instrument pretests for the IV estimation
of the inverse of the EIS. For this estimation, the results are
consistent between homoscedastic and HAC weak instrument
pretests. We cannot reject that instruments are weak for any of
the countries in the sample.

The last two columns in Table 2 show the point estimates
for ψ and 1/ψ . For those cases where we can reject weak in-
struments under heteroscedasticity and serial correlation, the
corresponding EIS point estimates are close to zero and often
negative. Additional caution is, however, warranted in this in-
terpretation, because as the number of countries increases, we
are more and more likely to reject weak instruments at least
once.

Our results confirm Yogo’s (2004) finding that the EIS is
small and close to zero. However, we also note that conditional
heteroscedasticity and serial correlation may further weaken
instruments and may affect TSLS and LIML bias in several of
the country-specific regressions.

7. CONCLUSION

Heteroscedasticity, serial correlation, and panel data cluster-
ing can affect instrument strength. This article develops a robust
test for weak instruments, which allows empirical researchers
to test the null hypothesis that the TSLS or LIML Nagar bias is
large relative to a benchmark.

The test is based on a scaled version of the regular F statistic.
Critical values depend on the covariance matrix of the reduced
form coefficients and errors. Our general test requires compu-
tational work to evaluate the Nagar bias of TSLS or LIML. A
simplified conservative version does not require this step, but
is only available for TSLS. Critical values can then be imple-
mented as quantiles of a noncentral chi-squared distribution with
noninteger degrees of freedom.

Pretests based on the robust (or nonrobust) first-stage F statis-
tic with Stock and Yogo (2005) critical values are commonly
applied outside the conditionally homoscedastic serially uncor-
related framework. However, to the best of our knowledge, there
is no analysis supporting this practice. This article offers an alter-
native: a simple, asymptotically valid test that should be used for
conditionally heteroscedastic, time series, and clustered panel
data.
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APPENDIX

A.1 Proof of Lemma 1

First note the preliminary result that under Assumptions L�

and HL

1√
S

(
Z′y

Z′Y

)
=
(

βC + Z′v1/
√

S

C + Z′v2/
√

S

)
(A.1)

d→
(

γ 1
γ 2

)
. (A.2)

1. β̂TSLS ≡ (Y′PZY)−1(Y′PZy) = (Y′Z(Z′Z)−1Z′Y)−1(Y′Z
(Z′Z)−1Z′y). Since we have assumed that Z′Z/S = IK ,
the result follows from (A.2) and the continuous mapping
theorem.

2. Write J = [ 1 0
−β 1 ] and κ = S(k − 1). Note that J is nonsingu-

lar and so the roots of |[y, Y]′[y, Y] − k[y, Y]′MZ[y, Y]| =
0 are the same as of |J′[y, Y]′[y, Y]J − kJ′[y, Y]′MZ

[y, Y]J| = 0. Moreover, [y, Y]′[y, Y] − (1 + κ/S)[y, Y]′

MZ[y, Y] = [y, Y]′PZ[y, Y] − κ[y, Y]′MZ[y, Y]/S
d→ [γ 1,

γ 2]′[γ 1, γ 2] − κ� uniformly in κ over compact sets. The
solutions of |[y, Y]′[y, Y] − (1 + κ/S)[y, Y]′MZ[y, Y]| =
0, therefore, converge to those of |J′[γ 1, γ 2]′[γ 1, γ 2]J −
κJ′�J| = 0. With J′�J = � thus S(k̂LIML − 1)

d→ κLIML,
where κLIML is as given in Lemma 1.2.

Then β̂LIML − β = [Y′(IS − k̂LIMLMZ)Y]−1[Y′(IS − k̂LIML

MZ)(y − βY)] = [Y′PZY − S(k̂LIML − 1) Y′MZY
S

]−1[Y′PZ

(y − βY) − S(k̂LIML − 1) Y′MZ(y−βY)
S

]
d→ [γ ′

2γ 2 − κLIML

σ 2
2 ]−1[γ 2(γ 1 − βγ 2) − κLIMLσ12].

3. Note that ω̂2
2 ≡ (Y − PZY)′(Y − PZY)/(S − K − 1) =

(v2 − PZv2)′(v2 − PZv2)/(S − K − 1)
d→ ω2

2 by Assump-
tions L� and HL. The result follows from (A.2) and the
continuous mapping theorem.

4. and 5. follow from (A.2), the continuous mapping theorem,
and Assumptions L� and HL.

A.2 LIML Distribution in Illustrative Example

We show that in the illustrative example heteroscedasticity
and serial correlation can effectively make instruments weaker
for LIML. Assume W = a2� ⊗ IK . Remember that β̂LIML =
arg minβ̃(y − β̃Y )′PZ(y − β̃Y)/(y − β̃Y)′(y − β̃Y). We will
analyze the weak instrument limit of the LIML objective
function. Note that, using Assumptions L� and HL, Z′(y −
β̃Y)/

√
S

d→γ 1 − β̃γ 2.

Moreover, (y − β̃Y)′(y − β̃Y)/S
p→ ω2

1 − 2β̃ω12 + β̃2ω2
2

uniformly in β̃ over compact sets. Hence, β∗
LIML is distributed

according to

arg min
β̃

a2 (ω1ψ1 − β̃ω2ψ2)′(ω1ψ1 − β̃ω2ψ2)

ω2
1 − 2β̃ω12 + β̃2ω2

2

.

Just as for the βTSLS, the vector of first-stage coefficients C and
the parameter a enter into the asymptotic distribution β∗

LIML only
through the noncentrality parameter C′C/(a2ω2

2).

A.3 Proof of Theorem 1

A.3.1 Proof of Theorem 1.1. We follow Rothenberg
(1984) in developing the Nagar (1959) moments for the TSLS
and LIML estimators. We need to expand β∗

TSLS and β∗
LIML as

second-order Taylor expansions in μ−1 around μ−1 = 0.
We start by developing the Taylor expansion for κLIML.

Write zu = S−1/2
1 (γ 1 − βγ 2) and zv = S−1/2

2 (γ 2 − C), so zu

and zv are standard multivariate normal. Also write λ =
μtr(S2)1/2S−1/2

2 C0, where C0 = C/‖C‖.
κLIML is defined as the smallest root of the determinantal

equation

det

(
A − κLIML

[
σ 2

1 σ12

σ12 σ 2
2

])
= 0, (A.3)

where

A =
[

z′
uS1zu z′

uS1/2
1 S1/2

2 (λ + zv)

z′
uS1/2

1 S1/2
2 (λ + zv) (zv + λ)′ S2 (zv + λ)

]
.

We can rewrite this as a quadratic equation(
κLIML

μ2

)2

− σ 2
v a11 + σ 2

1 a22 − 2a12σ12

μ2 det �

κLIML

μ2

+ det A
μ4 det �

= 0. (A.4)

We use the method of undetermined coefficients. Write

κLIMLμ−2 = c0 + c1μ
−1 + c2μ

−2 + O(μ−3) (A.5)

for unknown constants c0, c1, c2. Similarly write

d (μ) ≡ σ 2
2 a11 + σ 2

u a22 − 2a12σ12

μ2 det �

= d0 + d1μ
−1 + d2μ

−2 + O(μ−2) (A.6)

e (μ) ≡ det A
μ4 det �

= det A
μ4 det �

,

= e0 + e1μ
−1 + e2μ

−2 + O(μ−3), (A.7)

where the Taylor series expansions for d and e give
d0 = σ 2

1 tr(S2)/det �, e0 = 0, e1 = 0, and e2 = tr(S2)[z′
uS1zu −

(z′
uS1/2

1 C0)2]/det �.
Substituting (A.5), (A.6), and (A.7) into the quadratic Equa-

tion (A.4) and equating coefficients gives c0(c0 − d0) = 0. Since
we are interested in the smaller solution, we have c0 = 0. Then
c0 = 0, c1 = 0, c2 = ε2/d0, and so κLIMLμ−2 = 1

σ 2
1

[z′
uS1zu −

(z′
uS1/2

1 C0)2]μ−2 + O(μ−3).
We then expand β∗

LIML

β∗
LIML = μ−1 C′

0S1/2
1 zutr (S2)1/2

tr (S2)
+ μ−2 1

tr (S2)

(
z′
vS1/2

2 S1/2
1 zu

− 2
(
C′

0S1/2
1 zu

)(
C′

0S1/2
2 zv

)− c2σ12
)+ O(μ−3).

Taking the expectation of the first two terms gives the LIML
Nagar bias as in the theorem.
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We can similarly derive the Taylor expansion for β∗
TSLS ac-

cording to

β∗
TSLS = μ−1 C′

0S1/2
1 zutr (S2)1/2

tr (S2)
+ μ−2 1

tr (S2)

(
z′
vS1/2

2 S1/2
1 zu

− 2
(
C′

0S1/2
1 zu

)(
C′

0S1/2
2 zv

))+ O(μ−3).

The Nagar bias is defined as the expected value of the first two
terms, and hence equals

NTSLS(β, C, W,�) = 1

trS2
(trS12 − 2C′

0S12C0)μ−2.

A.3.2 Proof of Theorems 1.2 and 1.3. We prove Theorem
1.3 first. We assume that W and � are positive definite, so S and
� are also positive definite. S12 is real valued but not necessarily
symmetric. Note that

trS12 − 2C′
0S12C0 = trSsym

12 − 2C′
0Ssym

12 C0,

where Ssym
12 = 1

2 (S12 + S′
12) is the symmetric part of S12. Write

	 =

⎡⎢⎣λ1 0 . . . 0

0 λ2 . . . 0

0 0 . . . λK

⎤⎥⎦
for the diagonal matrix of eigenvalues of Ssym

12 . Assume the
eigenvalues are ordered, so λ1 ≥ λ2 ≥ · · · ≥ λK . For any real
matrix M, we write |M| = √

M′M, so the Schatten 1-norm for
matrices is defined as ‖M‖1 = tr|M|.

trSsym
12 − 2C′

0Ssym
12 C0 ≤

K∑
k=1

λk − 2λK

=
K−1∑
k=1

λk − λK

≤
K∑

k=1

|λk|

= ∥∥Ssym
12

∥∥
1 .

Similarly trSsym
12 − 2C′

0Ssym
12 C0 ≥ −‖Ssym

12 ‖1. Hence, |trSsym
12 −

2C′
0Ssym

12 C0| ≤ ‖0.5S12 + 0.5S′
12‖1 ≤ ‖S12‖1. The last step fol-

lows from the triangle inequality and from the fact that the
eigenvalues of S′

12S12 and S12S′
12 are the same.

Now tr(S′
12S−1

2 S12) ≤ tr(S1), see, for example, Theorem 7.14
in Zhang (2010). Applying the matrix trace Cauchy-Schwarz
inequality (Liu and Neudecker 1995, Theorem 1):

‖S12‖2
1 = (tr|S12|)2

≤ trS2tr
(|S12|′S−1

2 |S12|
)

= trS2tr
(
S′

12S−1
2 S12

)
.

Putting this together, we get ‖S12‖1 ≤ √
trS1trS2, proving

Theorem 1.3.
The TSLS part of Theorem 1.2 follows from Theorem 1.3.

For the LIML part note that BLIML(W,�) = supβ∈R gLIML(β),

where

gLIML(β) = max

(∣∣∣∣∣ trS12 − σ12

σ 2
1

trS1 − maxevalMB
√

trS1
√

trS2

∣∣∣∣∣ ,∣∣∣∣∣ trS12 − σ12

σ 2
1

trS1 − minevalMB
√

trS1
√

trS2

∣∣∣∣∣
)

, (A.8)

where MB = 1
2 (2S12 − σ12

σ 2
1

S1) + 1
2 (2S12 − σ12

σ 2
1

S1)′ and

gLIML(β) → maxevalW2

trW2
as β → ±∞. (A.9)

For W and � nonsingular gLIML is continuous in β everywhere,
and hence bounded.

A.4 Proof of Lemma 2

Assume that W and � are nonsingular. We prove that the test
that rejects if

F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ ) (A.10)

is asymptotically valid, that is, its asymptotic size is at most α.

Claim 1: The function F−1
C,W2

(α) is continuous in {C, W2}.

Proof: γ ′
2γ 2/tr(W2) is a continuous random variable with

nonzero density on R+, and therefore F−1
C,W2

(α) is strictly de-
creasing and continuous in α everywhere. By Van der Vaart
(2000, Lemma 21.2), the quantile function F−1

C,W2
(α) is contin-

uous in {C, W2} for any fixed α.

Claim 2: The function Be(W,�) is lower semicontinuous.

Proof: The function ‖ne(β, C0, W,�)‖/BM(β, W) is contin-
uous in W and �. Be(W,�) is the supremum of continuous
functions, and therefore is lower semicontinuous (Yeh 2000,
p. 274).

Claim 3: The function c(α, W2, x) is lower semicontinuous in
{W2, x}.

Proof: The function 1C′C/tr(W2)<x is an indicator function of
an open set, and therefore lower semicontinuous in {W2, x}.
The function F−1

C,W2
(α) is continuous in W2 and greater than

0. Hence, the product F−1
C,W2

(α)1C′C/tr(W2)<x is lower semicon-
tinuous in (W2, x) for any fixed α. c(α, W2, x) is a supremum
of lower semicontinuous functions, and therefore lower semi-
continuous in (W2, x) (Yeh 2000, p. 274). c(α, W2, x) is also
clearly nondecreasing in x.

Proof of Result: From the lower semicontinuity of B(W,�)
and the continuous mapping theorem, it follows that

min(Be(Ŵ, �̂), Be(W,�))
p→ Be(W,�). Similarly, for any

(Ŵ2, x̂)
p→ (W2, x), the continuous mapping theorem implies
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that min(c(α, Ŵ2, x̂), c(α, W2, x))
p→ c(α, W2, x). Then

P
(
F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ

)
(A.11)

≤ P

(
F̂eff > min

(
c

(
α, W2,

Be(W,�)

τ

)
, (A.12)

c

(
α, Ŵ2,

min(Be(W,�), Be(Ŵ, �̂))

τ

)))
(A.13)

→ P

(
F̂ ∗

eff > c

(
α, W2,

Be(W,�)

τ

))
(A.14)

= α (A.15)

Now we prove the second part of the Lemma. We first prove
a bound for the critical values. Let F−1

χ2
d (x)

(α) the upper α point

of a noncentral χ2 with d degrees of freedom and noncen-
trality parameter x. For any α ∈ [0, 1], c(α, W2, x) ≤ x∗ ≡
(
√

max(F−1
χ2

1 (0)
(α), F−1

χ2
2 (0)/2

(α), . . . , F−1
χ2

K (0)/K
(α)) + √

x)2.

Let Xi ∼ N (0, 1) iid, i = 1, 2, . . . , K , and let c ∈ A,
where A = {c ∈ R

K |∑K
i=1 ci = 1, ci ≥ 0,∀i} . From Szekely

and Bakirov (2003), x̃ ∈ R+ that infc∈A P (
∑K

i=1 ciX
2
i ≤ x̃) =

P (χ2
n/n(x̃) ≤ x̃), where the function n(x̃) is integer, non-

decreasing, bounded by K and equal to 1 whenever x̃ >

1.536. Let Q =∑K
i=1 ci(Xi + bi)2 a quadratic form in normal

random variables and write
∑K

i=1 cib
2
i = μ2. From the triangle

inequality,

P[Q > x] = P

[
K∑

i=1

ci(Xi + bi)
2 > x

]

≤ P

⎡⎢⎣
⎛⎝
√√√√ K∑

i=1

ciX
2
i + μ

⎞⎠2

> x

⎤⎥⎦ .

Whenever x > μ2 then P[Q > x]≤P[χ2
n(x1)/n(x1) >

x1(μ2, x)], where x1(μ2, x) = (x1/2 − μ)2. Moreover, this
bound is increasing in μ2 whenever x > μ2. Let x∗ as above.
Then x1(x, x∗) = max(F−1

χ2
1 (0)

(α), F−1
χ2

2 (0)/2
(α), . . . , F−1

χ2
K (0)/K

(α)).

Therefore, for μ2 ≤ x

P [Q > x∗] ≤ P
([

χ2
n(x1)/n(x1) > x1(x, x∗)

] ≤ α.

Now assume that Be(Ŵ, �̂) is bounded in probability. Then
c(α, Ŵ2, Be(Ŵ, �̂)) is bounded above in probability by some
c∗. Then

min[P(F̂eff > c(α, Ŵ2, Be(Ŵ, �̂)/τ ))),

P(F̂eff > c∗)]
p→ P(F ∗

eff > c∗). (A.16)

But then by the triangle inequality

P(F ∗
eff > c∗) ≥ P

⎛⎝μ >
√

c∗ +
√√√√ K∑

i=1

ciX
2
i

⎞⎠ , (A.17)

where ci are the eigenvalues of W2 and Xi are iid standard
normal. The right-hand side in (A.17) clearly converges to 1 as
μ2 → ∞, proving the second part of the Lemma.

SUPPLEMENTARY MATERIALS

• [A Robust Test for Weak Instruments: Supplementary Mate-
rials.]. Computational details and additional results. (PDF)

• [Files201200717.zip] MATLAB and STATA code to compute
figures, tables and critical values. (Zip file)
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