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A Further Details on Data Construction

Here we give more details about the construction of our main estimation sample.

We eliminated experiments that do not fit the most basic version of our model. Many
experiments apply only to a small set of searches. For example, a change in the ranking of
searches related to the National Basketball Association can be analyzed with data only on
a small percentage of queries, and its effect is zero for other queries. We eliminated these
experiments. There are also many experiments with multiple treatments, where engineers
test multiple versions of an innovation. We also eliminated these experiments.

We eliminated many experiments where the data was less reliable. We took a conserva-
tive approach of eliminating experiments where the data shows any signs of experimental
problems. We eliminated experiments in several steps. We consider only English speaking
users in the United States, because this is the market with the most reliable data. We elim-
inated experiments with missing data on any of a number of key metrics, and that had
potential problems according to a number of internal measures, such as statistical dis-
crepancies between the number of users in treatment and control groups. We eliminated
experiments that had been run for less than a week. These are possibly aborted experi-
ments because EXP recommends running experiments for at least a week. We eliminated
experiments run for more than four weeks because it is rare to run long-run experiments,
and these are often innovations that are ex ante viewed as potentially valuable. We also
eliminated experiments with a very small sample (less than one million users). The rea-
son is that many of the experiments with small samples were performed only on a small
subset of queries (such as only for users with a particular device), but this had not been
recorded correctly in the data. After this procedure, we were left with 1,505 experiments.

B Nonparametric Identification

As discussed in Section 4.4, the prior g is nonparametrically identified. To see this, note
that the unconditional distribution of δ̂i equals the sum of two independent random vari-
ables:

δ̂i = δi + (σi/
√
ni)ε, where δi has p.d.f. g, εi is N (0, 1), and δi⊥εi.

If we let ψX(t) denote the characteristic function of X at point t, it is straightforward to
see that:

ψδ(t) = ψδ̂i(t)
/

exp

(
−1

2

σ2
i

ni
t

)
. (B.1)

It is a well-known fact that any probability distribution is characterized by its characteris-
tic function (Billingsley (1995), Theorem 26.2, p. 346). Consequently, g is non-parametrically
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identified from the unconditional distribution of δ̂i, which in principle can be estimated
using data for different A/B tests with similar σi.1

C Audit and Weighted Maximum Likelihood Estimator

As we mentioned in the body of the paper, one of the key empirical challenges to estimate
the distribution of innovation quality is that outcomes of A/B tests can sometimes be
flukes caused by experimental problems. These problems arise because running A/B tests
in a major cloud product is a difficult engineering problem.

To ensure that our results are robust to the presence of flukes, we developed a simple
weighted Maximum Likelihood estimation strategy. The weights are proportional to the
‘reliability’ of each observation, and we estimate them using the audit data. We show
that his estimator delivers consistent and asymptotically normal estimators of the param-
eters that control the ex-ante distribution of innovation quality. The large sample prop-
erties of the Weighted Maximum Likelihood (WML) estimator does not require paramet-
ric assumptions about the distribution generating the flukes. In addition, the suggested
procedure is easily implementable and the standard errors are weighted versions of the
textbook ‘sandwich’ covariance matrix for Maximum Likelihood estimators.

The remainder of this section describes the audit, estimator, and empirical results.

C.1 Audit Details

After constructing the dataset, we performed a detailed audit of a subset of observations.
We audited three sets of observations: the 100 observations with the largest absolute val-
ues of delta in success rate, all observations where the absolute value of delta in any of a
number of key metrics was in the top 2 percentile, and a random set of 100 observations.
The two latter audits included experiments with filters for a subset of users, and experi-
ments with multiple treatments. For this reason, our main dataset only has 209 audited
observations. The audit has two goals. First, by auditing observations throughout the
distribution we can determine whether experiments with larger or smaller deltas have
data problems. Second, by auditing all observations in the tail we can more accurately
determine tail coefficients.

The audit included manually checking each observation’s description and comments, and
contacting engineers involved in each experiment. We assigned, for each experiment, a

1The identification argument above has been used extensively in the econometrics and statistics litera-
ture; see Diggle and Hall (1993) for a seminal reference. If, contrary to our assumption, the distribution of
(σ/
√
n)ε were unknown, non-parametric identification of g would not be possible unless additional data is

available or additional restrictions are imposed; see for example Li and Vuong (1998).
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probability that the experiment is valid. This probability equals 0 or 1 when we can de-
termine validity with certainty. This happens for example if the documentation reports a
data problem, or if the relevant engineer reports that the experiment was valid. However,
for some experiments, the comments were not sufficiently clear, and we could not contact
the engineers involved. In these cases, we assigned our best assessment of the probabil-
ity that the experiment is valid. We also used the audit to make sure that experiments
were independent ideas, as opposed to minor tweaks of the same idea. We found that a
few of the experiments in the sample were in small groups of such variations. Whenever
this is the case, we diluted the total probability of an observation being valid across all
experiments in a group.

The audit showed that many of the remaining observations are invalid due to data or
experimental problems. Out of the 209 audited observations, the average probability of
an observation being valid is 50%. Thus, engineering and design problems in experiments
are relevant, and we have to carefully take this audit data into account to properly analyze
the data.

As a first step, we used the audit data to determine whether the fluke observations that
have been flagged for data issues come from a different distribution than the observations
that are deemed reliable. To do so, we fitted models that estimate the probability that each
observation is valid. Because our most important results are about the distribution of suc-
cess rate, our model was a LASSO with input variables of the sample deltas, their absolute
values, and their squares. We selected the best model with 10-fold cross-validation. We
followed the standard practice of choosing the simplest model within one standard error
of the minimum cross-validated mean square error. The best LASSO model turned out to
have only a constant. That is, experiments with and without data problems have similar
distributions of the sample deltas. Figure C.1 plots the cross-validated mean square error
versus the regularization parameter λ. Figure C.2 is a scatterplot of our hand-coded prob-
ability that an observation is valid versus the delta in success rate, along with a linear fit
and confidence interval.

C.2 A simple model for flukes

Following the notation in the main body of the paper, let δ̂i denote the estimated quality
of idea i. For notational simplicity—and since σi and ni are both treated as known—we
will denote the parametric density for the outcome of experiment i as mi(δ̂i; β), instead of
m(δ̂i; β;σi, ηi).
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Figure C.1: Cross validation of the LASSO regularization parameter.

Notes: The figure displays the cross-validated fit of the LASSO of probability valid versus the measured
delta in success rate. The figure plots mean square error as a function of the LASSO penalty parameter λ,
along with upper and lower standard deviation curves. The figure uses 10-fold cross validation.

The independence assumption across experiments give us the standard (unweighted)
Maximum Likelihood objective function

logm(β) ≡
n∑
i=1

logmi(δ̂i; β).

We allow for experimental errors by assuming that each outcome δ̂i is a finite mixture of
correct observations and flukes. Formally, we assume that with probability wi (indepen-
dent of β)

δ̂i is drawn according to the p.d.f mi(·; β),

and with probability 1− wi

δ̂i is drawn according to the fluke p.d.f p(·;σi, ni).

Crucially, we allow the fluke density p to depend on (σi, ni), but not on β. Under these
simple modeling assumptions, the density for δ̂i becomes a discrete mixture with two
components:

h(δ̂i; β, σi, ni) ≡ wimi(δ̂i; β) + (1− wi)p(δ̂i;σi, ni). (C.1)
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Figure C.2: Probability valid versus measured delta.

Notes: The figure displays the fit of the relationship between probability valid and the measured delta in
success rate for all audited observations. The figure plots the raw data, along with a linear model fit with
95% confidence intervals.

For notational convenience we introduce the (latent) binary variable Ti ∈ {0, 1} that takes
the value of 1 whenever the outcome of the i-th A/B test is generated by the true model
and 0 if it is a fluke. We assume that (δ̂i, Ti) are independent across i, although they are
allowed to have nonidentical distributions.

The likelihood based solely on the density mi(δ̂i; β) is misspecified, as data are in fact gen-
erated by (C.1). White (1982) has shown, under very general conditions, that misspecified
maximum likelihood estimators have a well defined probability limit. Unfortunately, the
limit is typically not the parameter of interest. This means, that under potential flukes in
the data, unweighted Maximum Likelihood estimation is not appropriate.

C.3 Standard Maximum Likelihood estimation of a model with flukes

The data observed by the econometrician is (δ̂1, . . . , δ̂n). If wi and pi were known, the
likelihood of the data according to (C.1) would be

n∑
i=1

log hi(δ̂i; β) =
n∑
i=1

log
(
wimi(δ̂i; β) + (1− wi)pi(δ̂i)

)
, (C.2)

where hi(·; β) and pi(·) are used for notational simplicity. The necessary first order condi-
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tions of the problem are

=
n∑
i=1

1

hi(δ̂i; β)
wi(∂mi(δ̂i; β)/∂β),

(since we have assumed gi does not depend on β),

=
n∑
i=1

(
wimi(δ̂i; β)

hi(δ̂i; β)

)(
∂mi(δ̂i; β)/∂β

mi(δ̂i; β)

)
,

=
n∑
i=1

P(Ti = 1|δ̂i; β, wi, pi)si(δ̂i; β), si(δ̂i; β) ≡ ∂ logmi(δ̂i; β)

∂β
, (C.3)

where the last line uses Bayes’ Theorem and s(x, β) denotes the score of mi(x; β).

For given wi and pi, β is identified in the statistical model given by (C.1). Thus, standard
regularity conditions—such as those given in Hoadley (1971)—imply that the maximizer
of equation (C.2) converges in probability to some vector β0, which is the parameter we
would like to estimate.

C.4 Infeasible Weighted Maximum Likelihood

Maximizing the likelihood in (C.2) requires us to specify a density for the flukes, possibly
for each experiment. This section introduces a Weighted Maximum Likelihood approach,
which allow us to estimate β0 without relying on parametric assumptions about the fluke
distributions pi(·).

Suppose that an oracle gives us information about the ‘reliability’ of the outcome of the
A/B tests in the sample:

P0(Ti = 1|δ̂i) ≡ P(Ti = 1|δ̂i; β0, pi, wi). (C.4)

Algebra shows that maximizing the Infeasible Weighted Maximum Likelihood objective
function

QIn(β) ≡ 1

n

n∑
i=1

P0(Ti = 1|δ̂i) log
(
mi(δ̂i; β)

)
(C.5)

with respect to β has exactly the same first order conditions as (C.2), regardless of the fluke
density pi. We denote the maximizer of the infeasible likelihood in (C.5) as β̂IWML.

The parameter β0 is identified as a maximizer of (the limit) of the objective function in
(C.5):
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QI∞(β) ≡ lim
n→∞

1

n

n∑
i=1

E [P0(Ti = 1|δ) log (mi(δ; β))] . (C.6)

The fact that β0 is a maximizer of this equation, follows from the fact that β is identified in
the statistical model mi(·; β0) and that wi > 0 for at least some i:

QI∞(β)−QI∞(β0) = lim
n→∞

1

n

n∑
i=1

E [P0(Ti = 1|δ) log (mi(δi; β)/mi(δ; β0))] ,

= lim
n→∞

1

n

n∑
i=1

∫
wim(δ; β0) log (mi(δ; β)/mi(δ; β0)) dδ,

(by definition of P0(Ti = 1|δ))

≤ lim
n→∞

1

n

n∑
i=1

wi log

∫
(mi(δ; β)) dδ = 0,

where the last line uses Jensen’s inequality and the identification of β in each of the statis-
tical models {mi(·; β)}β .

Therefore, we can view the estimation of β0 based on the infeasible WML criterion in (C.5)
as an extremum estimation problem whereQIn(β) is the population objective function and
QI∞(β) is its probability limit. Standard regularity conditions such as

sup
β
|QI

n(β)−QI
∞(β)| p→ 0, and QI∞(β) < QI∞(β0) ∀ β, (C.7)

readily imply that β̂IWML
p→ β0. See Theorem 2.1 in Newey and McFadden (1994).

C.5 Feasible Weighted Maximum Likelihood

The problem in (C.5) is infeasible since the reliability of each experiment is unknown. As-
sume that the audit data allows us to generate an estimator P̂ (Ti = 1|δ̂i) that is uniformly
consistent across estimated outcomes of the experiments:

Assumption WML1: Under β0

Mn ≡ sup
δ
|P̂ (Ti = 1|δ)− P0(Ti = 1|δ)| p→ 0. (C.8)

A concern with the uniform consistency assumption is that the support of δ is not bounded.
Auditing the data allows us to know exactly whether the data generated by some exper-
iment is a fluke or not. We cannot audit all of our experiments, (budget constraints), but
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we can check all the A/B tests that have, for example, the 100 largest/smallest outcomes.
Auditing the tails then implies that our estimation will focus only on the head of the dis-
tribution, which gives a support over which we can generate uniform consistency results.

Definition: The Feasible Weighted Maximum Likelihood estimator β̂WML maximizes the
criterion function

QF
n (β) ≡

n∑
i=1

P̂ (Ti = 1|δ̂i) log
(
mi(δ̂i; β)

)
. (C.9)

The estimator that solves (C.9) is the feasible version of the estimator that solves (C.5).

Proposition C.1 (Consistency of β̂WML). Let B denote the parameter space for β and assume it
is compact. Suppose (C.7) holds and that the following regularity conditions are satisfied

supβ∈B
1
n

∑n
i=1

∣∣∣ logmi(δ̂i; β)− E[logmi(δ; β)]
∣∣∣ = Op(1),

supβ∈B
1
n

∑n
i=1

∣∣∣E[logmi(δ; β)]
∣∣∣ = O(1).

Assumption WML1 then implies
β̂WML

p→ β0.

Proof: Algebra shows that

|QF
n (β)−QI

∞(β)| =
∣∣∣ 1
n

n∑
i=1

P̂ (Ti = 1|δ̂i) log
(
mi(δ̂i; β)

)
−QI

∞(β)
∣∣∣

≤ Mn
1

n

n∑
i=1

∣∣∣log
(
mi(δ̂i; β)

)
− E[logmi(δ; β)]

∣∣∣
+ Mn

1

n

n∑
i=1

∣∣∣E[logmi(δ; β)]
∣∣∣

+ |QI
n(β)−QI

∞(β)|

It follows that Conditions 1, 2 and equation (C.7) imply

sup
β∈B
|QF

n (β)−QI
∞(β)| p→ 0.

Thus, the sample feasible objective function QF
n (β) converges uniformly to QI

∞(β) in B.
The second part in (C.7) states that β0 is the unique maximizer of QI

∞(β). Theorem 2.1 in
Newey and McFadden (1994) gives the desired result. �
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Conditions 1 and 2 are regularity conditions that we need to impose because our data are
not independently distributed. In the i.i.d. case, these results boil down to continuity of
E[logmi(δ; β)] and a certain Law of Large numbers for the sums of | logmi(δ̂, 1)|.

The proof then consists of expressing the feasible Weighted Maximum Likelihood estima-
tor as an extremum estimator. Such analogy allows us to also characterize its asymptotic
distribution. Theorem 3.1 in Newey and McFadden (1994) imply that one should expect
to have √

n(β̂WML − β0)
d→ N (0, H−1ΣH−1),

where H and Σ are the matrices such that

√
n∇β0Q

F
n (β0)

p→ N (0,Σ), ∇β0β0Q
F
n (β0)→ H. (C.10)

The following proposition provides high-level conditions under which we can easily char-
acterize the matrices Σ, and H in terms of formulae that are completely analogous to un-
weighted ML. Interestingly, the resulting formulae says that we can ignore the estimation
uncertainty in the reliability of each observation.

Proposition C.2 (Asymptotic Variance of β̂WML). Suppose

1√
n

∑n
i=1

(
P̂ (Ti = 1|δ̂i)− P0(Ti = 1|δ̂i)

)
si(δ̂i; β0) = op(1)

1
n

∑n
i=1

(
P̂ (Ti = 1|δ̂i)− P0(Ti = 1|δ̂i)

)
Hi(δ̂i, β0) = op(1),

where

Hi(δ̂i, β0) ≡
∂2 log(δ̂i; β0)

∂dβ2
.

Then √
n
(
β̂WML − β0

)
→ N (0, H−1ΣH−1),

where

Σ ≡ lim
n→∞

1

n

n∑
i=1

E
[
P 2
0 (Ti = 1|δ)si(δ; β0)si(δ; β0)′

]
,

H ≡ lim
n→∞

1

n

n∑
i=1

E [P0(Ti = 1|δ)Hi(δ; β0)] .

Proof: Theorem 3.1 in Newey and McFadden (1994) implies that Σ is the asymptotic vari-
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ance of

√
n∇β0Q

F
n (β0) =

1√
n

n∑
i=1

P̂ (Ti = 1|δ̂i)si(δ̂; β0),

=
1√
n

n∑
i=1

P0(Ti = 1|δ̂i)si(δ̂; β0)

+
1√
n

n∑
i=1

(
P̂ (Ti = 1|δ̂i)− P0(Ti = 1|δ̂i)

)
si(δ̂; β0).

Condition 1 implies that

√
n∇β0Q

F
n (β0) =

1√
n

n∑
i=1

P0(Ti = 1|δ̂i)si(δ̂; β0) + op(1)

The population analog of (C.3) implies Zi ≡ P0(Ti = 1|δ̂i)si(δ̂; β0) is a sequence of in-
dependent, mean zero random vectors. A Central Limit Theorem for independent not
identically distributed random variables implies

√
n∇β0Q

F
n (β0) is asymptotically normal

with mean zero and variance given by

lim
n→∞

1

n

n∑
i=1

E[ZiZi’],

which gives the expression for Σ.

Likewise, Theorem 3.1 in Newey and McFadden (1994) implies that H is the probability
limit of

1

n

n∑
i=1

P̂ (Ti = 1|δ̂i)Hi(δ̂i, β0) =
1

n

n∑
i=1

P0(Ti = 1|δ̂i)Hi(δ̂i, β0)

+
1

n

n∑
i=1

(
P̂ (Ti = 1|δ̂i)− P0(Ti = 1|δ̂i)

)
Hi(δ̂i, β0)

=
1

n

n∑
i=1

P0(Ti = 1|δ̂i)Hi(δ̂i, β0) + op(1),

where the last line follows from Condition 2. A weak law of large numbers for indepen-
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dent, not identically distributed data then implies

H ≡ lim
n→∞

1

n

n∑
i=1

E [P0(Ti = 1|δ)Hi(δ, β0)]

�.

The result of the proposition above suggests a natural estimator for the asymptotic vari-
ance of the Weighted Maximum Likelihood Estimator:

Ĥ−1Σ̂−1Ĥ−1, (C.11)

where

Σ̂ ≡ 1

n

n∑
i=1

P̂ 2(Ti = 1|δ)si(δ; β̂WML)si(δ; β̂WML)′,

Ĥ ≡
n∑
i=1

P̂ (Ti = 1|δ)Hi(δ; β̂WML).

C.6 Empirical Estimates

The figure below compares the results of both unweighted and weighted Maximum Like-
lihood. The figure suggests that flukes are not much of an issue in our application, except
for the estimator of the tails of LR1.

To empirically implement the WML, we used weights from the audit and from the LASSO
estimates of the probability of each observation being valid. For the audited observations,
we used the value from the audit. For all other observations we used the LASSO esti-
mate. Because the best fitting model was a constant, this is just the sample mean of the
probability of an observation being valid in the audit.

D Quality of Marginal Ideas

This section presents more detailed statistics on the data on triage procedures discussed
in Section 5.3.

Figure D.1 shows that the data is roughly consistent with engineers’ description of the
offline procedure. Engineers report that the review panel tends to return ideas in the
offline phase 1 if there is statistically significant negative performance in any of the four
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Figure C.3: Weighted Maximum Likelihood estimate of the tail coefficients.
Notes: The figure displays the weighted (red) and unweighted (blue) maximum likelihood estimates of the tail coefficients α. SR1,

SR3, and SR3 represent the alternative short-run metrics, SR0 represents success rate, and LR1 and LR2 represent the long-run metrics.

The solid lines represent 95% confidence intervals.

offline metrics. Figure D.1 plots a histogram of the results of all four offline metrics, across
all the experiments in our data that passed phase 1. The figure displays some signs of
missing mass below a t-statistic of -2.

0

10

20

30

−4 −2 0 2 4

t−stat

co
un

t

Figure D.1: Histogram of offline metrics.
Notes: The figure plots a histogram of the measured deltas in the four offline metrics in the triage sample. The figure is broadly

consistent with engineers’ accounts that the review panel tends to return to phase 1 ideas that have statistically significant negative

performance in any of the metrics.
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Figure D.2 plots the mean delta in session success rate in online tests for ideas split by
whether they have offline scores that are above or below the median. Consistent with
Figure 7 in the body of the paper, the offline metrics do not seem to be predictive of online
metrics.
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Figure D.2: Measured delta in success rate versus offline performance.
Notes: The figure the average delta in success rate for ideas in the triage data versus the performance according to offline metrics, split

in above and below median performance.

We formally tested whether the offline metrics are predictive of online success using linear
regression models. Table D.1 shows that none of the regression coefficients is statistically
significant, corroborating the apparent lack of correlation in Figures 7 and D.2.



16

Table D.1: Delta in success rate versus offline metrics.

Dependent variable:
Measured Delta in success rate

Offline metric 1 0.007
(0.010)

Offline metric 2 −0.004
(0.009)

Offline metric 3 0.004
(0.012)

Offline metric 4 −0.001
(0.010)

Constant 0.009
(0.016)

Observations 14
R2 0.074
Adjusted R2 −0.338
Residual Std. Error 0.036 (df = 9)
F Statistic 0.179 (df = 4; 9)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Finally, we checked whether the offline metrics correlate with each other. Figure D.3 dis-
plays a series of scatterplots. They indicate that the offline metrics are not highly cor-
related to each other, even though some of these metrics are meant to proxy for similar
dimensions of performance.
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Figure D.3: Scatter matrix of performance in offline metrics.

E Disaggregated Estimates

Table E.1 displays our estimates for the distribution of gains in session success rate dis-
aggregated across different budget subareas of Bing, across time, across experiment du-
rations, and across sample size terciles. The table suggests that the main empirical result,
of tail coefficients substantially below 3, holds in these subsamples. All point estimates
are well below 3, although they are less precise than our benchmark results. Still, most
estimates are statistically below 3 with p-values of <0.1%.
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Table E.1: Maximum Likelihood Estimates

Subsample M s α observations

Date: 2013-10-21 to 2014-09-09 -9.89e-04 3.99e-03 1.58* 482
(2.32e-03) (3.72e-03) (0.65)

Date: 2014-09-10 to 2015-07-30 -7.78e-04 3.41e-03 1.26*** 506
(1.94e-03) (2.27e-03) (0.26)

Date: 2015-07-31 to 2016-06-19 -4.79e-04 2.46e-03 1.20*** 462
(1.99e-03) (1.96e-03) (0.29)

Budget area: ux -5.85e-04 2.59e-03 0.97*** 331
(2.22e-03) (1.99e-03) (0.19)

Budget area: relevance -1.09e-03 4.40e-03 1.81** 1026
(1.49e-03) (2.39e-03) (0.50)

Budget area: engagement 1.67e-03 1.70e-03 1.02*** 93
(4.25e-03) (3.35e-03) (0.36)

Length: one week -9.43e-04 4.07e-03 1.60* 567
(2.21e-03) (3.24e-03) (0.62)

Length: over one week -6.09e-04 2.88e-03 1.20*** 883
(1.41e-03) (1.56e-03) (0.19)

Sample size tercile: 1 2.24e-04 6.28e-03 1.55*** 484
(3.13e-03) (4.19e-03) (0.45)

Sample size tercile: 2 -2.29e-03 6.50e-03 2.01 483
(2.46e-03) (4.18e-03) (0.92)

Sample size tercile: 3 -2.66e-04 1.67e-03 1.07*** 483
(1.52e-03) (1.31e-03) (0.21)

Notes: The table displays the maximum likelihood estimates of the parameters M , s, and the tail coefficient
α for session success Rate, disaggregated by budget area. Standard errors are reported in parentheses.
Asterisks are used to denote the magnitude of p-values based on a one-sided t-tests for the hypothesis α < 3

(∗p < 5%, ∗∗p < 1% and ∗∗∗p < 0.1%).

F Analysis of Alternative Metrics

Our main analysis considers the success rate performance metric. To gauge the robustness
of our empirical methodology, we looked at alternative metrics (section 4.2). We consid-
ered two types of alternative metrics. We use short-run alternative metrics for robustness.
Short-run metrics, much like success rate, gauge the quality of the user experience. There-
fore, we expect to find similar results as for success rate. We use long-run metrics as
placebos. Long-run metrics measure long run user engagement. EXP engineers consider
that long-run metrics are much harder to move. Moreover, these metrics are noisy. There-
fore, engineers consider it very difficult for an idea to create a detectable movement in
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the long-run metrics. This is the reason why short-run metrics are prevalent in shipping
decisions. We expect that our estimates should validate engineers’ intuitions.

We will first report the results and then examine their implications. Table 2 in the text de-
pict parameter estimates for the alternative metrics. Figure F.1 depicts the posterior mean
function. Figure F.2 reports the production function for an experiment with 20 million
users relative to the value of perfect information.
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Figure F.1: The posterior mean function Pi(δ̂i, ni) for the alternative metrics.
Notes: The figure assumes a prior with a Student t-distribution and parameters equal to our empirical estimates from Section 4. The

parameter σi is set to the average in the data and ni is set to the typical value of 20 million users.

The results for most of the short-run metrics are similar to those for success rate, as ex-
pected. The estimated tail coefficients are in the same ballpark. The only exception is
short-run metric #2, whose tail coefficient has point estimate slightly below α = 1, al-
though the confidence interval overlaps with α = 1. We found the result for short-run
metric #2 puzzling, although it may be due to experimental noise or data quality issues
for this metric.2 Either way, this unexpected result is in the direction of fatter tails. There-
fore, the results are consistent with our main empirical result that experimentation at Bing
seems to be well within the fat-tailed α < 3 case of the model. Figures F.1 and F.2 illustrate

2We see three possible explanations. First, it is clearly possible that this is due to noise, due to the small
number of data points that we have available. Second, it is possible that this is due to errors in the data. In
our audit, we contacted engineers responsible for each innovation to check whether the experimental results
are valid. However, engineers focused on the key success rate metric, and it is possible that experiments
with issues in one of the other metrics can be classified as valid. This seems especially plausible for short-run
metric #2, because of the kinds of instrumentation problems that this metric is more susceptible to. Third, it
is possible that indeed a distribution with α < 1 is the best fit in the relevant range in the data.
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Figure F.2: The value of a 20 million user experiment for the alternative metrics.
Notes: The figure plots the fraction of the value of a 20 million user experiment relative to the value of perfect information, fi(20 ·

106)/fi(∞). The figure assumes a prior with a Student t-distribution and parameters equal to our empirical estimates from Section 4.

The parameter σi is set to the average in the data.

that the model has qualitatively similar behavior for all short-run metrics with finite prior
means.

The results for the placebo long-run metrics are consistent with engineers’ views. Figure
F.1 shows that the posterior mean should barely be updated after seeing even a relatively
large experimental result. This is in stark contrast to the short-run metrics, where outliers
should be taken at face value. This is consistent with engineers’ intuitions that there is a
lot of noise relative to signal in the data (this can also be seen in Table 1 by comparing the
standard deviation of measured deltas and the mean standard errors). Figure F.2 shows
that, for the long-run metrics, the value of a typical 20 million user experiment is negligi-
ble. Such experiments capture a negligible share of the value of perfect information. This
is in contrast to the short-run metrics, where a typical experiment seems to capture about
60-70% of the value of perfect information. This intuition is consistent with engineers’
views: long-run metrics are important, but too hard to move relative to noise to make for
good shipping criteria.
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G Theoretical Extensions

G.1 Other Costs of Experimentation

In our baseline model, the only cost of experimentation is due to the scarcity of data. In
this section, we consider three additional costs.

• Fixed costs. Idea i has a cost Fi of running an experiment, which must be paid if
ni > 0. In a setting like Bing, the fixed cost corresponds to engineering costs of
coding the idea and running the experiment.

• Variable costs. Idea i has a variable cost Ci(ni) of an experiment with ni users. The
variable cost is a smooth function in R+ with Ci(0) = 0 and finite derivative at 0. In
an economic randomized controlled trial setting, these are variable costs of running
the experiment and collecting data.

• Short-term user experience costs. Idea i has a benefit γ · ∆i · ni of an experiment
with ni users (this is a cost if ∆i < 0 and a benefit if ∆i > 0). The parameter γ ≥ 0

measures how much the firm values the welfare of users in the experiment relative
to the welfare of users after ideas are implemented. In the Bing example, this cost
corresponds to how much the experimental platform hurts user experience.

These additional costs can be analyzed naturally with our production function approach.
We summarize the key points in the following proposition.

Proposition G.1. Consider a firm that maximizes the gain from equation (2) minus the fixed,
variable, and short-term user experience costs. Then:

1. The optimal experimentation strategy maximizes the sum of production functions
minus costs

I∑
i=1

[fi(ni)− 1ni>0 · Fi − Ci(ni)− γ · E[−∆i] · ni]

subject to
∑I

i=1 ni ≤ N and ni ≥ 0 ∀ i.

2. If there are no fixed costs, under the assumptions of Corollary 1 with tail coefficient
α < 3, then lean experimentation is optimal. That is, the optimal experimentation
strategy has all ni > 0.

3. With fixed costs, lean experimentation may not be optimal even under the assump-
tions of the second part of Corollary 1 with tail coefficient α > 3. That is, there
exist such examples where the optimal experimentation strategy has ni = 0 for some
ideas.
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Proof. The proof of part 1 follows because the profits under an optimal implementation
strategy admit a production function decomposition similar to Proposition 2, but with the
added costs. The proof of this decomposition is analogous to that in Proposition 2. The
proof of part 2 is analogous to the proof of the first part of Corollary 1. The proof of part 3
is by example. Consider the case where there is an idea i for which fi(N) < Fi. Then it is
optimal to set ni = 0.

We now explain the key points that follow from this proposition.

Point 1: The production function approach can be used in settings where these differ-
ent costs are relevant. The first part of the proposition shows how to use the production
function to analyze optimal experimentation in settings where these additional costs are
important. As an illustration, consider short-run user experience costs.3 Consider a com-
plex client based software product such as Windows. These products often have a small
set of users who sign up to receive early updates. These users are considered valuable,
because the early updates are helpful for finding bugs. Many companies do not perform
A/B tests with these users to avoid hurting their experience. We can model this as a large
value of γ. The proposition gives two insights.

The first insight is that, with fat tails, performing experiments in settings like the one
described above may be a good idea. If tails are sufficiently fat (αi < 3), and fixed costs
are small, it is optimal to perform a positive level of experimentation, despite the large
value of γ. The reason is that f ′i(0) =∞, so that even small experiments can be helpful by
finding outliers.

The second insight is that the production function can give quantitative and qualitative
guidance for optimal experimentation. For example, consider two ideas i = 1, 2 with
similar priors, except for the mean. Both priors have a tail coefficient α < 3 and negative
means. Assume that the only relevant cost is the short-term user experience cost. Then, if
both ideas are experimented on, the first order condition gives

f ′i(ni) = γ · E[−∆i].

Using our small ni approximation, marginal products equal a constant times n
α−3
2

i . There-

3These costs are not perceived to be important at Bing, in the sense that Bing does not reduce the size of
experimental samples in order to improve user experience. The reason is that short-term user experience
costs are perceived to be small relative to the benefits of experimentation. Bing measures short-run user
experience costs by keeping a hold out sample of users who are not experimented on. Bing performs slightly
better for these users. This is consistent with our finding that the average idea quality is negative but with
a small absolute value. Part of the better performance in the holdout sample is due to the experimentation
platform slowing down Bing. This cost is better captured as a variable cost Ci(ni).
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fore,
n2

n1

≈
(
E[−∆1]

E[−∆2]

) 2
3−α

.

Thus, the production function can inform how much to experiment on different types of
ideas. Namely, optimal sample sizes have an elasticity of about 2/(3 − α) with respect to
the expected harm of each idea.

Point 2: With fat tails, lean experimentation is always optimal with variable costs, but
not with fixed costs. Corollary 1 shows that, with fat tails and no experimentation costs,
it is optimal to perform a positive amount of experimentation on every idea. That is, lean
experimentation is optimal. Part 2 of the proposition shows that the result is robust to
introducing variable costs of experimentation. The reason is that the marginal product
f ′i(0) at ni = 0 is infinity, whereas the derivative of costs is finite.

Lean experimentation need not be optimal in the presence of fixed costs. The reason is
that, if fixed costs are large, then the benefit fi(ni) of running a small experiment may be
not be enough to cover the fixed costs Fi. In this sense, fixed costs push towards a big data
experimentation strategy.4

Point 3: Fat tails are still relevant in an environment with fixed costs and abundant data.
Even if the most important costs are the fixed costs, fat tails are important for the optimal
experimentation strategy.

To see this point, consider the extreme case where there is essentially no scarcity in the
amount of data available for experimentation. That is, N = ∞.5 Assume that the only
cost of experimentation is the fixed cost Fi > 0. The proposition implies that the optimal

4More generally, there are other practical issues that can push towards the big data experimentation
strategy. There are three issues that are commonly discussed. First, A/B tests often produce results along
multiple metrics, so that precise experiments can be useful for understanding the effects of certain changes.
Second, there are some ideas for which the key issue is understanding the precise magnitude of the effect.
For example, at Bing there are certain changes that are very likely to generate gains, but have a resource
cost. One example would be increasing the size of the index, or refresh external data sources more often. In
these cases, the key issue is to measure the precise gain to determine whether it is worth the additional cost.
Third, precise experiments are thought to be useful for an iterative development procedure. Sometimes
engineers produce a minimal viable version of a feature. Engineers then run a precise experiment to make
sure that the feature is not hurting consumers. If so, they exert further development effort to optimize the
feature.

5This negligible marginal value of data is not a good description of experimentation at Bing for four
reasons. First, parallelization is somewhat limited at Bing due to engineering reasons, so that experiments
can only be parallelized in a few budget areas, such as different levels of the search engine ranking. Second,
the ideas that engineers consider have sufficiently small effect sizes relative to noise so that standard errors
are in line with the effects of typical ideas. Third, we find empirically that the marginal value of data f ′i(ni) is
not negligible. Fourth, practitioners in similar settings argue that the introduction of parallelization greatly
increased productivity and that data is valuable (Tang et al., 2010).
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Figure G.1: Isoproduct curves of f(∞)
Notes: The figures plot the combination of mean and scale parameters that lead to the same value of f(∞). Panel A depicts a Normal

prior and Panel B depicts a Student t prior. The degrees of freedom in the t-distribution parameters correspond to the benchmark

empirical estimates in Section 4.5 for our main metric.

experimentation strategy is to experiment with the ideas for which

fi(∞) > Fi.

Therefore, optimal experimentation in an environment with fixed costs and abundant data
consists of finding the ideas have a value of fi(∞) higher than the fixed costs.

The proposition yields two observations in this setting. First, under our estimated pa-
rameters, fat tails make experimentation valuable. So ideas with fat tails are likely to be
profitable to experiment on. For example, under our empirical estimates, an increase in α
from the benchmark estimate of 1.31 to 2.31 decreases the value of fi(∞) by 61.33%.

Second, fat tails change how different characteristics of ideas should be evaluated. To
illustrate this, consider the value of ideas with a t prior distribution with parameters
(M, s, α). Figure G.1 plots isoproduct curves of fi(∞) of ideas with different combina-
tions of mean M and scale parameters. Figure G.1a sets α to ∞, which corresponds to
a normal distribution. Figure G.1b sets α to our benchmark empirical estimate of 1.31.
The figure shows that, at our estimated parameters, isoproduct curves are much steeper
with the fat-tailed t distribution than with the normal distribution. That is, greater spread
is much more valuable with the t distribution. This is intuitive because, in the fat-tailed
case, a larger fraction of the gains of experimentation comes from outliers.
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G.2 Mutually Exclusive A/B testing Problem

We now consider a variation of the A/B testing problem where the firm can implement
at most one of the I different ideas after observing the experimentation results. This fits
examples like a firm deciding between five alternative designs for a website. We refer to
these situations as a “mutually exclusive” A/B testing problem (as only one idea can be
implemented at the time).6

To model this, we replace the firm’s objective function by

Π̃(n, S) ≡ E
[

max
i∈S

Pi(δ̂i, ni)
]
, (G.1)

where P (δ̂i, ni) is the posterior mean, n is the experimentation strategy and S is the im-
plementation strategy. In the mutually exclusive A/B testing problem, S refers to the idea
that the firm implements after observing all experimental outcomes. If no idea is imple-
mented, S is the empty set.

For comparison, we remind the reader that firm’s payoff in the original A/B testing prob-
lem was

Π(n, S) ≡ E
[∑
i∈S

Pi(δ̂i, ni)
]
. (G.2)

In both cases, the expectation is taken over the marginal distribution of experimental out-
comes.

Optimal Implementation Strategies: We have shown that the optimal implementation
strategy under the linear payoff in (G.2) consists of implementing all ideas with a positive
posterior mean. Consequently, the optimal ex-ante payoff is

Π(n, S∗) ≡ E
[ I∑
i=1

Pi(δ̂i, ni)
+
]
. (G.3)

Algebra shows that the optimal implementation strategy (n, S∗) under the ‘max’ payoff in
(G.1) consists of either implementing the idea with the largest posterior mean (if at least
one of these posterior means is positive), or not implementing anything (if all posterior
means are strictly negative). Thus, the optimal ex-ante payoff is

6This set-up is related to the “ranking and selection” problem described in Gupta and Miescke (1996). A
popular algorithm for this problem (and for sequential versions of it) is the knowledge gradient described in
Frazier et al. (2008). See also Frazier (2018) for a good reference on the knowledge gradient, its connections
to the value of information, and recent applications to Bayesian optimization.
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Π̃(n, S∗) ≡ E
[

max
i∈{1,...,I}

Pi(δ̂i, ni)
+
]
. (G.4)

It follows that
Π̃(n, S∗) < Π(n, S∗).

Optimal Experimentation Strategy: The following Corollary summarizes the optimal ex-
perimentation strategy with mutually exclusive innovations.

Corollary G.1. Consider a firm that can implement only one innovation after experimentation
results; that is, the firm has the payoff given by equation (G.1). Assume that all ideas have the
same prior distribution of quality, that this distribution satisfies the assumptions of Theorem 2,
and that there is more than one idea.

• If the distribution of quality is sufficiently thick-tailed, α < 3, it is optimal to run exper-
iments on all ideas (that is, it is optimal to “go lean”), even if at most one idea will be
eventually be implemented.

• Suppose in addition that the slowly varying function in Theorem 2 satisfies c(δ) → c as
δ →∞. If the distribution of quality is sufficiently thin-tailed, α > 3, and if N is sufficiently
small, the firm should allocate all experimental resources to one idea (that is, it is optimal to
“go big”).

Proof. Part 1: it is optimal to “go lean” if α < 3

Suppose that the optimal experimentation strategy n is not lean. Without loss of general-
ity, assume that n is such that ni > 0 for ideas 1, . . . , J , with J < I , and ni = 0 for the other
ideas. We will show that there exists an alternative experimentation strategy, n̂, such that

Π̃(n, S∗) < Π̃(n̂, Ŝ∗). (G.5)

To construct n̂, let us consider the strategy that reduces n1, n2, . . . , nJ by ε > 0 each, and
increases nJ+1 by J · ε, i.e. n̂i = ni − ε if i ≤ J , n̂J+1 = Jε and n̂i = 0 for i > J . Then, firm’s
optimal payoff under this alternative experimentation strategy is

Π̃(n̂, Ŝ∗) = E
[

max
i∈{1,...,J+1}

P (δ̂i, n̂i)
+
]

= E
[

max
{

max
i∈{1,...,J}

P (δ̂i, n̂i)
+, P (δ̂J+1, n̂J+1)

+
}]
,
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which is bigger than

E
[
1A(ε) · max

i∈{1,...,J}
P (δ̂i, n̂i)

+

]
+ E

[
1A(ε)c · P (δ̂J+1, n̂J+1)

+

]
, (G.6)

where
A(ε) ≡ {(δ̂1, . . . , δ̂I) | P (δ̂i, ni − ε) ≥ 0, for some i ∈ {1, . . . , J}}.

Equation (G.6) is equivalent to

E
[

max
i∈{1,...,J}

P (δ̂i, n̂i)
+
]

+ P[A(ε)c] · f(n̂J+1) = Π̃(nε, S∗) + P[A(ε)c] · f(n̂J+1)

where nεi ≡ ni − ε for i ≤ J and nεi = 0 for i > J .

It is sufficient to show that we can choose ε > 0 small enough such that

Π̃(nε, S∗) + P[A(ε)c] · f(J · ε) > Π̃(n, S∗). (G.7)

To do this, define H(ε) ≡ Π̃(nε, S∗) + P[A(ε)c] · f(J · ε). Observe that H(0) = Π̃(n, S∗).

We will show that H ′(θ) > 0 for all θ < ε, for some ε small enough. This will imply the
existence of θ ∈ (0, ε) such that

H(ε)−H(0) = ε ·H ′(θ) > 0. (G.8)

By definition,

H ′(ε) =

(
J∑
i=1

∂Π̃(nε, S∗)

∂ni
· (−1)

)
+
∂P[A(ε)c]

∂ε
· f(J · ε) + P[A(ε)c] · f ′(J · ε) · J (G.9)

The first two terms are uniformly bounded for small enough ε. Moreover, P[A(ε)c] is
uniformly bounded from below for for all ε small enough and f ′(J · ε)→ +∞ as ε→ 0 (as
α < 3), we conclude that H ′(ε) > 0. This means that for small enough ε

Π̃(n̂, Ŝ∗) ≥ Π̃(nε, S∗) + P[A(ε)c] · f(J · ε) > Π̃(n, S∗).

The inequality above contradicts the fact that n was the optimal experimentation strategy.

Part 2: it is optimal to “go big” if α ≥ 3 and N is sufficiently small.
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Suppose that optimal experimentation strategy n is not big. Suppose there are least two
innovations. We will prove that an alternative experimentation strategy n̂ that allocates
all data into a single innovation improves the firm’s payoff; that is:

Π̃(n, S∗) < Π̃(n̂, Ŝ∗) (G.10)

To show this, observe first that

Π̃(n, S∗) ≤ Π(n, S∗). (G.11)

This follows because the firm’s optimal payoff in the mutually exclusive A/B testing prob-
lem is smaller than in the standard A/B testing problem (see equations (G.3) and (G.4)).

In addition

Π(n, S∗) < Π(n̂, Ŝ∗).

This is because Corollary 1 in the main text of the paper showed that in the standard A/B
testing problem the firm can achieve a strictly higher payoff under a ‘big’ experimentation
strategy (provided α ≥ 3 and N is sufficiently small).

Finally,
Π(n̂, Ŝ∗) = Π̃(n̂, Ŝ∗).

This last equality follows because n̂ is an experimentation strategy that A/B tests only
one idea and the prior mean of all the other ideas is negative. Thus the implementation
strategy and the firm’s payoff will be the same in both the mutually exclusive case and the
standard case with a linear payoff.

G.3 Hypothesis-Testing Payoff

This section consider the A/B testing problem with a ‘hypothesis testing payoff’. We
assume that if an innovation is implemented, its payoff is given by

K1 (∆i > 0)− 1 (∆i ≤ 0) .

Algebra shows that under the hypothesis testing payoff, an idea is implemented whenever

KP
(

∆i > 0 | ∆̂
)
≥ P

(
∆i ≤ 0 | ∆̂

)
.

This holds if and only if
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P
(

∆i > 0 | ∆̂
)
.

Monotonicity of P (∆i > 0 | ∆̂i) in the signal implies that only projects with large enough
estimated effect are implemented. Let δ∗n denote the implementation threshold (which
depends on K and n). The ‘production function’ is now given by

K

∫ ∞
0

Φ

(
δ − δ∗

σn

)
g(δ)dδ −

∫ 0

−∞
Φ

(
δ − δ∗

σn

)
g(δ)dδ

The definition of threshold signal implies

K

∫ ∞
0

φ

(
δ − δ∗

σn

)
g(δ)dδ =

∫ 0

−∞
φ

(
δ − δ∗

σn

)
g(δ)dδ.

Using arguments analogous to Claims 1,2,4,6,8 in our paper we can show that

δ∗n/σn ∼
√

2α log σn.

A result analogous to Lemma A.5 shows that the marginal product is now given by

1

2
αc(δ∗n)(σt∗n)n(α−2/2).

G.4 Optimal Sample Sizes with an Elastic Supply of Ideas

The main text considers a perfectly inelastic supply of ideas. In this section, we consider
the case of a perfectly elastic supply of ex-ante identical innovations at some fixed cost
of experimentation. We will use this case to develop intuition, and to understand the
importance of fatter tails versus other ways of spreading out distributions.

We consider the same problem of optimal experimentation with a fixed cost F of experi-
mentation as in Section G.1. We consider the special case where all ideas have the same
experimental variance σ2 and the same ex-ante prior G satisfying the assumptions from
Section 2. We take the number of potential ideas to be very large so that we can essentially
take I = ∞. We restrict attention to symmetric solutions, so that the goal is to choose
an experiment size n and number of ideas to experiment J to maximize profits subject to
n · J ≤ N . Let f be the production function associated with prior G. The problem is

max
n,J

J · (f(n)− F ) (G.12)

s.t.J · n ≤ N . (G.13)
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Denote the set of optimal values of n for positive real n and J as n∗(F,N). We will also be
interested in the solution restricted to positive integer n and J . Denote the set of optimal
values of nwith integer restrictions as n̄∗(F,N). Throughout this section, denote the value
of perfect information f(∞) as the limit of f(n) as n converges to infinity. Given our
maintained assumptions, f(∞) is strictly positive and finite.

Optimal experimentation.

We now derive the solution to this problem. We begin with the case of strictly positive
fixed cost of experimentation. The following result characterizes the solution for the styl-
ized case of no integer constraints. This case gives a good intuition for the solution when
N is very large, so that integer constraints are not important.

Remark G.1 (Positive fixed cost and no integer constraints). Assume that the fixed cost of
experimentation F is strictly positive, and that there are no integer constraints. Then:

1. If the value of perfect information f(∞) is less than or equal to the fixed cost of
experimentation F , then the optimal value is 0 and n = J = 0 is an optimal solution.

2. If f(∞) > F , the optimal solution n∗(F,N) does not depend on N . n∗(F, n) equals
the set of values of n that maximize the average product net of fixed costs, defined
as

n∗∗(F ) = arg max
n>0

f(n)− F
n

.

This set of values of n is bounded. The optimal value is linear in N and equals

N ·
(
f(n∗∗(F ))− F

n∗∗(F )

)
.

Proof. The case f(∞) ≤ F is trivial. Consider now the case f(∞) > F . To obtain a value
of at least 0, it is necessary to set f(n) > F , and in particular n > 0 at the optimum. The
production function is strictly increasing by lemma A.2. Therefore, constraint (G.13) holds
with equality. Using n > 0 and substituting J in the objective (G.12) we obtain the value

max
n

N ·
(
f(n)− F

n

)
.

This establishes the results on the maximum and arg max. The fact that n∗∗(F ) is bounded
follows from f(∞) <∞, which follows from G having a finite mean.

This result gives some intuition for a form of lean experimentation with a very large
amount of data N . Even if N is very large, the optimum is to set the size of each ex-
periment at some fixed value in the set n∗∗(F ). Therefore, it is not optimal to grow the
size of each experiment without bound as more data is available, and instead it is better
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to increase the number of ideas being tested. This result only depends on the elementary
fact that f is bounded. This is the intuition that we highlighted before, that one reason for
lean experimentation is abundance of data. This is an elementary reason that has nothing
to do with fat tails, and holds whenever data is plentiful.

The following result formally shows that this broad intuition holds if we take the integer
constraints into account.

Remark G.2 (Positive fixed cost and integer constraints). Assume that the fixed cost of
experimentation F is strictly positive, and that there are integer constraints. Fix a value of
F . Then:

1. If the value of perfect information f(∞) is less or equal than the fixed cost of exper-
imentation F , then the optimal value is 0 and n = J = 0 is an optimal solution.

2. If f(∞) > F , the set of optimal solutions n̄∗(F,N) is uniformly bounded for all N .
As N converges to infinity, the value is asymptotically Θ(N).7

Proof. The case of f(∞) < F is trivial. Assume f(∞) > F . To obtain a positive value, it is
necessary that (f(n)− F )/n be positive. But, because f is bounded, this can only happen
in a bounded set. Therefore, n̄∗(F,N) is uniformly bounded for all N .

It only remains to show that the maximum value is in Θ(N). The upper bound follows
from remark G.1. The lower bound follows from setting n to be equal to 1 and setting I
equal to N .

The only case left is when the fixed cost of experimentation F is zero. In this case, we also
have the main result that optimal sample sizes are bounded even if there is abundant data
(so that we still get the result that abundant data makes a type of lean experimentation
strategy optimal). The result is slightly more nuanced because the solution depends on the
thickness of the tails of the prior distribution. With thick tails, we obtain an even starker
result towards lean experimentation.

Remark G.3 (No fixed cost and no integer constraints). Assume that the fixed cost of ex-
perimentation F is zero, and that there are no integer constraints. Assume moreover that
the prior satisfies the assumptions of Theorem 2. Then:

• If tails are sufficiently fat so that α < 3, the program (G.12) is unbounded. It is
possible to achieve an arbitrarily high value. The value of an experiment size n

converging to zero and J = N/n ideas converges to infinity.

7That is, the value is bounded above and below by a positive constant times N .
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• If the tails are thinner, α > 3, the program (G.12) is bounded. The set of optimal
experiment sizes n∗(F,N) does not depend on N , and equals the set of experiment
sizes n∗∗(0) that maximize average product. This set of values of n is bounded. The
optimal value is linear in N and equals

N · f(n∗∗(0))

n∗∗(0)
.

Proof. The value of setting n = 0 is zero. Assume henceforth that n > 0. The value of an
experiment of size n with J = N/n innovations is

N
f(n)

n
.

If α < 3, the derivative f ′(n) converges to infinity as n→ 0, by Theorem 2. Therefore, the
value approaches∞ as n converges to zero. This proves the first part.

If α > 3, the derivative at zero is 0. Therefore, Nf(n)/n converges to zero both as n
converges to zero and to infinity. Therefore, the maximization program is bounded, and
has a solution that maximizes f(n)/n. This set of solutions n∗∗(0) is bounded because
f(n)/n converges to zero as n converges to infinity. This proves the second part.

The previous remark covers the case without integer restrictions. In particular, this can be
relevant when N is large, so that integer restrictions are not important and that the result
of experimenting on a bounded number of ideas is relevant. This leaves open the case of
integer constraints and no fixed cost.

To understand this case, we performed illustrative calculations with our estimated t-
distribution, with fat tails, and with a normal distribution with the same shape parameters
but thin tails. The relevant production functions are displayed in Figure 2. We consider
the case of F = 0 and N = 20 × 106. We find that, with the normal distribution, it is
optimal to place all 100 million users in a single experiment with n = N . In contrast, with
the t-distribution, it is optimal to set n = 1 and run a huge number J = N experiments.
Naturally, this is not a realistic solution because it is not realistic to assume that there is a
costless supply of this many ideas. However, the example corroborates the point that fat
tails are an important driver of lean experimentation. Moreover, this is true even in the
case where data is not so abundant that we are close to perfect information, since in this
case we still want to concentrate all data in one innovation with a thin-tailed normal prior.

Nonparametric identification.

A natural question is whether the optimal level of experimentation can be recovered from
metadata from many experiments, like the data we use in this paper. The answer is yes.
As explained in Section 4.4, our data allows us to non-parametrically identify the prior
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distribution G. The prior allows us to calculate the production function f . And, from the
production function and an estimate of the cost of experimentation F we can calculate the
optimal experiment sizes in all of the cases analyzed above.

Comparative statics. We now consider whether a prior that is, in some sense, “more
spread out”, leads to leaner experimentation. This type of result is not true in general.
However, we will see that it does hold in at least one important case. Moreover, this result
only depends on the prior having greater spread, and not on changing the thickness of the
tails. This reinforces the point made in the main text, that one reason for lean experimen-
tation is that data has eventually decreasing returns, so that it is better to try more ideas
once experiments are large enough to learn most of the payoff-relevant information about
an idea.

We assume that idea quality
∆ = M + s∆0, (G.14)

where M < 0 and s > 0 are the mean and standard deviation, and ∆0 is a random vari-
able with mean 0, standard deviation 1, and probability density function g0. We are inter-
ested in how the efficient scale depends on the spread parameter s. A natural conjecture
is that the optimal experiment size is decreasing in s. That is, that “more spread out”
distributions always lead to a smaller efficient scale. While this is true in some paramet-
ric examples, it does not hold in general. The most trivial counter-examples come from
our remarks above. For example, if the prior g0 is fat-tailed and the fixed costs are zero,
average product is unbounded, regardless of the parameter s (remark G.3). As another
example, consider a case with positive fixed costs where f(∞) < F , so that it is optimal
not to experiment, and setting either n = 0 or J = 0 is optimal. Increasing s can push
the value of perfect information above F , so that the optimal level of experimentation
becomes strictly positive.

We now show that, in the limiting case where the prior becomes uninformative, a greater
spread does lead to leaner experimentation. In fact, we show that the optimal efficient
scale converges to zero in this case. Moreover, this result does not depend on parametric
assumptions. We will use the following notation. Given s, denote the density of ∆ as
g(·|s), and the production function as f(·|s). Denote the efficient scale as

n̄(s) = max
f(n|s)
n

.

Assume that f ′(0|s) = 0, as in the thin-tailed case, so that this program has a solution. Let
f(∞|s) denote the value of the production function if we were able to observe ∆ without
noise. We have the following result.

Theorem G.1. Let ∆0 be a random variable with mean zero and unit standard deviation. Let g0
denote the p.d.f. of ∆0. Assume that g0(0) > 0 and that g0 satisfies the regularity assumptions of
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Theorem 1 and has a production function with derivative zero at 0. Consider an idea with quality
∆ distributed as in equation (G.14). As s converges to infinity, the efficient scale n̄(s) converges
to zero.

The key idea in the proof is that, as s becomes large, the production function behaves as
the large-n approximation in Theorem 1. We first establish this large-s approximation in
the following lemma, and then use the lemma to prove the theorem. Throughout this
section, let σn = σ/

√
n.

Lemma G.1. [Alternate Version of Theorem 1] Fix any n0 > 0. Then, as s converges to infinity,

f ′(n|s) =
1

2n
· 1

s
· g0(0) · σ2

n +O

(
1

n2s2

)
, (G.15)

and
f(n|s)
n

=
f(∞|s)
n

− f ′(n|s) +O

(
1

n2s2

)
, (G.16)

uniformly in n for n ≥ n0.

Proof. The proof is based on three intermediate claims.

Claim 1: Fix any n0 > 0. Then, as s converges to infinity:

P (δ̂, n, s) = δ̂ +
1

s
σ2
n

g′0

(
δ̂−M
s

)
g0

(
δ̂−M
s

) +O

(
1

n2s3

)
,

Var[∆|∆̂ = δ̂, n, s] = σ2
n +O

(
1

n2s2

)
,

uniformly in δ̂, and uniformly for n ∈ [n0,∞).

Proof of Claim 1. We will obtain these approximations by applying the asymptotic Tweedie
Formula that we derived in Corollary A.1. Consider first the problem where we observe
a signal ∆̂0|∆0 = δ0 ∼ N (δ0, σ

2
n/s

2), and we have a prior ∆0 ∼ g0. Let P0(δ̂, n, s) denote
the posterior mean of ∆0 when ∆̂0 = δ̂ (and we have parameters nand s). This is the same
framework that we used for Theorem 1 in the paper, but with a scale ns2, instead of n.
Corollary A.1 implies that:

P0(δ̂, n, s) = δ̂ +
1

s2
σ2
n

d

dδ̂
log g0(δ̂) +O

(
1

n2s4

)
,

Var[∆0|∆̂0 = δ̂, n, s] =
1

s2
σ2
n +O

(
1

n2s4

)
.
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Consider now the problem where we observe a signal ∆̂|∆ = δ1 ∼ N (δ1, σ
2
n) and ∆ =

M+s∆0. This means we can write ∆̂ = ∆+σnε, where ε is a standard normal independent
of ∆0. Let P (δ̂, n, s) denote the posterior mean of ∆ when ∆̂ = δ̂. Algebra implies that

P (δ̂, n, s) = E[M + s∆0|∆̂ = δ̂]

= M + sE[∆0|M + s∆̂0 = δ̂]

= M + sP0((δ̂ −M)/s, n, s).

Consequently,

P (δ̂, n, s) = δ̂ +
1

s
σ2
n

g′0

(
δ̂−M
s

)
g0

(
δ̂−M
s

) +O

(
1

n2s3

)
.

Analogously,

Var[∆|∆̂ = δ̂, n, s] = Var[M + s∆0|M + s∆̂0 = δ̂, n, s]

= s2Var[∆0|∆̂0 = (δ̂ −M)/s, n, s],

and

Var[∆|∆̂ = δ̂, n, s] = σ2
n +O

(
1

n2s2

)
.

These approximations hold uniformly in δ̂, and uniformly for n ∈ [n0,∞).

Claim 2: Let δ∗(n, s) denote the unique value of δ̂ for which P (δ̂, n, s) = 0. Given n0 > 0,
δ∗(n, s) converges to 0 as s converges to infinity uniformly for n in [n0,∞).

Proof of Claim 2. The proof is analogous to the first part of Theorem 1. As s→∞,

P (δ̂, n, s)→ δ̂, P (−δ̂, n, s)→ −δ̂,

uniformly over [n0,∞). Since P (δ̂, n, s) is monotonic in the signal, and g0(0) > 0 (by
assumption), we conclude that δ∗(n, s) converges to 0 as s converges to infinity uniformly
for n in [n0,∞), given n0 > 0.

Claim 3: Let m(·, n, s) denote the marginal density of ∆̂. Then

m(δ̂, n, s) =
1

s
g0

(
δ̂ −M
s

)
+O

(
1

ns3

)
.
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Proof of Claim 3. Consider again the problem where we observe a signal ∆̂0|∆0 = δ0 ∼
N (δ0, σ

2
n/s

2), and we have a prior ∆0 ∼ g0. Let m0(δ̂) denote the marginal density of ∆̂0

evaluated at δ̂. Applying Lemma A.3 for k = 0 implies

m0(δ̂) = g0(δ̂) +O

(
1

ns2

)
.

Using the representation ∆̂ = ∆ + σnε, where ε is a standard normal independent of ∆0

and ∆ = M + s∆0, then the marginal cumulative distribution function of ∆̂ at δ̂ is

P(∆̂ ≤ δ̂) = P((∆̂−M)/s ≤ (δ̂ −M)/s)

= P(∆̂0 ≤ (δ̂ −M)/s).

Then,

m(δ̂) =
1

s
m0((δ̂ −M)/s) =

1

s
g0((δ̂ −M)/s) +O

(
1

ns3

)
.

Proof of the Lemma. We now use Claims 1,2,3 to derive an approximation for the marginal
product formula. To denote the dependence of the marginal product on s2 we write
f ′(n|s). By Lemma A.2:

f ′(n|s) =
1

2n
·m(δ∗(n, s), n, s) · Var

[
∆|∆̂ = δ∗(n, s), n, s

]
.

Using the approximations for the posterior mean, posterior variance, and marginal den-
sity in Claims 1 and 3 we have that the following approximation holds uniformly for
n ≥ n0,

f ′(n|s) =
1

2n
· 1

s
g0

(
δ∗(n, s)−M

s

)
· σ2

n +O

(
1

n3s3

)
.

By Claim 2, δ∗(n, s) → 0 as s converges to infinity uniformly in n ≥ n0. We know that
δ∗(n, s)/s and M/s converge to zero at a rate of at least 1/s. So

f ′(n|s) =
1

2n
· 1

s
g0 (0) · σ2

n +O

(
1

n2s2

)
.

Finally, integrating this formula with respect to ngives

f(n|s) = f(∞|s)− nf ′(n|s) +O

(
1

ns2

)
,
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where f(∞|s) denotes the value of the production function if we were able to observe ∆

without noise. The formula for average product follows by dividing both sides by n.

Proof of Theorem G.1. Consider an arbitrary n0 > 0. Lemma G.1 above implies that as s
converges to infinity (G.15) and (G.16) hold. Therefore, for any n > n0,

f(n|s)− nf ′(n|s) = f(∞|s)− 2nf ′(n|s) +O

(
1

ns2

)
(G.17)

= f(∞|s)− 1

s
· g0(0) · σ2

n +O

(
1

ns2

)
. (G.18)

Moreover, the value of perfect information f(∞, s) converges to infinity as s converges to
infinity. Therefore, for large enough s, equation (G.17) is strictly positive for all n ≥ n0.
Consequently, the first-order condition for the optimal scale, which requires f ′(n|s) =

f(n|s)/n (marginal product to equal average product) is not satisfied for any n ≥ n0.
Therefore, the efficient scale is lower than n0. Because we chose n0 arbitrarily, this implies
that the efficient scale converges to zero as s converges to infinity.

G.5 A model of “flukes” for the experimental noise

In section C.2 we introduced a simple model to allow for the possibility that our data could
come from a fluke distribution independent of idea quality. In this section, we consider
an analogous fluke model for the experimental noise and study its effects over our lean
experimentation results.

Fix the true quality of idea i. Suppose that with probability w the signal δ̂i|δi is N (0, σ2
n)

and with probability 1 − w, δ̂i has as a p.d.f p(·) that does not depend on δi. This means
that the distribution of δ̂i|δi has p.d.f

h(δ̂i|δi) = wφ

(
δ̂i − δi
σn

)
+ (1− w)p(δ̂i).

Maintaining the notation in the main body of the paper, let m(δ̂i) denote the marginal
distribution of the signal in the model without flukes and prior g(δ). Let g(δ|δ̂i) denote the
posterior density in the model with no flukes.

Algebra shows that the marginal distribution of δ̂i in the model with flukes is given by

mF (δ̂i) ≡ wm(δ̂i) + (1− w)p(δ̂i).
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Consequently, the posterior density in the model with flukes is given by

gF (δ|δ̂i) =
wm(δ̂i)

mF (δ̂i)
g(δ|δ̂i) +

(1− w)p(δ̂i)

mF (δ̂i)
g(δ).

Thus,

gF (δ|δ̂i) =
w

w + (1− w)(p(δ̂i)/m(δ̂i))
g(δ|δ̂i) +

(1− w)

w(m(δ̂i)/p(δ̂i)) + (1− w)
g(δ). (G.19)

That is, the posterior distribution of δ in the model with flukes is a convex combination of
the posterior density in the model without flukes and the prior. This happens because the
fluke density is not informative about the true idea quality (thus, with some probability,
the prior is not updated). The weights in the linear combination above depend on the
realization of the signal, on the probability of a fluke, and on the marginal densities m(δ̂i)

and p(δ̂i).

We want to consider the case in which the fluke density p(δ̂i) has fat-tails. So assume that
this p.d.f has right-tails proportional to cpδ−{αp+1}. The tails of the marginal density m(δ̂i)

will be proportional to those of the prior (which are of the form cδ−{α+1}), as the marginal
density is based on a model with Gaussian experimental noise. This means that for large
enough δ̂i

p(δ̂i)/m(δ̂i) ≈ δ−(αp−α).

Consequently, if the tails of the fluke distribution are thinner than those of the prior (that
is, αp > α), the posterior density in the fluke model will be close to the posterior density in
the model without flukes (at least in terms of tail behavior). Conversely, if the tails of the
fluke distribution are very fat then the posterior density in the fluke model will be close
to the those of the prior.

This means that our small-n results are will hold as long as αp > α, but the value of small
experiments will be close to zero if α > αp. This will happen because as n → 0, the value
of experimentation comes from outlier ideas that are implemented. However, because the
posterior density in the fluke model gets close to the prior if α > αp, then outlier ideas will
not be implemented — as they will have a negative posterior mean.

H Additional Figures

This panel below presents the posterior mean and production function for a Student tprior
distribution with different degrees of freedom.
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Figure H.1: Posterior Mean and Production Function for a Student t−prior.
Notes: The figures on the left panel plot the posterior mean for different sample sizes. The solid line corresponds to a sample size of

20 million. The dashed line to 10 million and the dotted line to 5 million. The figures on the right panel plot the production function

as a fraction of the value of perfect information, f(n)/f(∞). The t-distribution parameters correspond to the benchmark empirical

estimates for Mand s in Section 4.5 for our main metric. Each row (from top to bottom) represents three different tail coefficients:

α ∈ {1.3, 3, 20}.
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To further illustrate the relevance of fat tails in our analysis, the figure below compares the
posterior mean function for a fat-tailed prior and a Normal distribution. It is well known
that the posterior mean under a Normal prior is a linear combination between δ̂i and the
prior mean. This linear combination depends on the size of the experimental noise and
the prior variance. This means that, under a Normal prior, outliers are never taken at
face value. This stands in contrast with the Student-t prior. The figure below shows that
for large values of δ̂i, the posterior mean based on a Student-t prior lies almost on the 45
degree line.
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Figure H.2: Posterior Mean: Student t−prior vs. Normal.

Notes: Notes: The solid line represents the posterior mean corresponding to a prior with a Student t-distribution and parameters

equal to our benchmark empirical estimates from Section 4. The dotted line represents the posterior mean corresponding to a prior

with a Normal distribution, with parameters estimated to maximize the marginal likelihood of the data. In this case, the posterior

mean function is linear with slope s2/(s2 + (σ2
i /ni)). The parameter σi is set to the average in the data and ni is set to the typical

value of 20 million users, so that the standard error σi/
√
ni is 0.022.
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I Hill’s tail-index estimator

In Section 4 we presented different summary statistics of the data and we argued that they
displayed typical signs of fat tails. For example, the largest absolute value of the exper-
imental outcomes are several standard deviations away from the mean. These reduced-
form statistics, as well as most other typical estimators of a tail index, rely—almost by
definition—on outliers. The Maximum Likelihood estimators we report in Section 4.5 try
to sidestep this issue by using a parametric model for the distribution of deltas.

The figure below reports Hill’s tail-index estimator based on the top k values of δ̂i in the
sample. We let k range from 1 to 362 (which represents the 25% largest observations in the
sample). The results we report below are only for the Success Rate (SR0) metric.
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Figure I.1: Hill’s tail-index estimator.

Notes: The solid line presents Hill’s tail-index estimator as defined in Haeusler and Teugels (1985). Each value in the x-axis refers to

how many of the largest observations in the sample are used to compute the estimator. For comparison, the dashed line presents the

Maximum Likelihood estimator using a Student t−prior.
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