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Chen Qiu§ Jörg Stoye§ Lezhi Tan‡

October 2025

Abstract

Elliott, Müller, and Watson (2015) suggested a numerical algorithm for determining a

nearly most powerful test of a given size in a general class of nonstandard hypothesis testing

problems. Their algorithm iteratively updates a candidate least-favorable distribution sup-

ported on finitely many points. We show that—in testing problems where the null hypothesis

postulates M distributions for the observed data—a slight variation of their algorithm coin-

cides with a stochastic mirror descent routine for convex optimization. This insight allows us

to formally show that, given a desired approximation error, one can use a stochastic mirror

descent routine to provably obtain—after finitely many iterations—both an approximate least-

favorable distribution and a nearly optimal test, in a sense we make precise. Our theoretical

results yield concrete recommendations about the algorithm’s implementation, including its

initial condition, its step size, the number of iterations, and the number of stochastic draws

per iteration that can be used to approximate the subgradient of the objective function.

1 Introduction

Consider the problem of testing a null hypothesis that postulates finitely many distributions for the

observed data against a single alternative hypothesis. More concretely, suppose the data is modeled
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as a Y-valued random variable, denoted as Y , and let the hypothesis testing problem take the form:

H0 : the distribution of Y is Fm, m = 1, . . . ,M, vs. H1 : the distribution of Y is G. (1)

Elliott et al. (2015) presented a numerical iterative algorithm to obtain a nearly optimal test for

(1) and applied their procedure to some nonstandard hypothesis problems that involve nuisance

parameters.1 Broadly speaking, their nearly optimal test is designed to correctly reject the null

hypothesis almost as frequently as it would be theoretically possible, while guaranteeing that the

probability of incorrectly rejecting the null is bounded above by a prespecified constant α ∈ (0, 1).

As we will explain later, the key component of the algorithm in Elliott et al. (2015) is a simple

and intuitive formula (see their Equation 10, p. 782) that is used to iteratively update a candidate

least-favorable distribution over the M densities in the null hypothesis.2 The nearly optimal test

in Elliott et al. (2015) is a likelihood ratio test of size α that replaces the null hypothesis, H0, by a

single mixture distribution obtained from averaging F1, . . . , FM using the least-favorable distribution

obtained in the last iteration of their algorithm. To the best of our knowledge, the theoretical

guarantees for this procedure remain unknown.

The goal of this paper is to present new theoretical results showing that a slight variation of the

numerical algorithm developed by Elliott et al. (2015) can indeed be used to provably find—after

finitely many iterations and with high probability—both an approximate least-favorable distribution

and a nearly optimal test for (1), in a sense we make precise. In order to better understand the

value of our work, it is helpful to organize our main results as follows.

Our first result (Theorem 1) shows that a slight variation of the iterative routine suggested by

Elliott et al. (2015) coincides with an algorithm known in the convex optimization literature as

1See Elliott and Müller (2014), Müller and Watson (2016), Müller and Wang (2017), Müller and Watson (2018),
Guggenberger, Kleibergen, and Mavroeidis (2019), Müller and Watson (2020), Dou and Müller (2021), Li and Müller
(2021), Müller (2025), Muralidharan, Romero, and Wüthrich (2025) for applications of the algorithm in Elliott et al.
(2015) to different econometric problems.

2See Lehmann and Romano (2005), Chapter 3, p. 84, for a definition of a least-favorable distribution in hypothesis
testing problems.
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Stochastic Mirror Descent (Bubeck, 2015, Chapter 6.1). Stochastic Mirror Descent (henceforth,

S-MD) is a family of first-order, iterative algorithms designed to approximately minimize convex

functions when an unbiased estimator of its subgradient is available.3 We show that the convex

program that arises naturally in the testing problem in (1) is the dual of the mathematical program

that defines themost powerful test of size α; see Equations 4-5-6 and Lemma 1). The choice variables

in the dual problem—which we refer to as multipliers—are nonnegative vectors κ ∈ RM , and the

least-favorable distribution is proportional to the optimal multipliers (Remark 1). As we explain

later, there are three slight modifications to the algorithm in Elliott et al. (2015) that transform it

into an off-the-shelf S-MD routine. First, the S-MD formula we use to update the multipliers at the

end of each iteration—Equation 11 in Theorem 1—ensures that the candidate solution of the dual

satisfies the constraint
∑M

m=1 κm ≤ 1/α, a property that is satisfied by the true solution (Lemma 2).

This adjustment introduces an additional proportionality constant that is not part of the algorithm

presented in Elliott et al. (2015). Second, the typical output of the S-MD algorithm is the average

value of the multipliers over all iterations, as opposed to the multiplier obtained in last update.4

Third, the typical implementation of the S-MD routine comes with a specific suggestion for the

initial condition, which in the testing problem we consider is of the form (1/(αM), . . . , 1/(αM)),

provided M > exp(1)/α (see Theorem 1).

The slight modifications discussed in the paragraph above are crucial for the theoretical results

presented in this paper. We define a distribution to be approximately least favorable when it can

be used to approximately solve the dual problem, up to an additive constant ϵ (see Definition 1).

Our second result (Theorem 2) leverages well-known results in the convex optimization literature

to show that the S-MD routine described in our Theorem 1—stopped after (4(1− α)2/α2ϵ2) · ln(M)

3Mirror descent is known to outperform stochastic gradient descent in some cases; see Section 4.3 of Bubeck
(2015).

4Averaging the trajectories of a stochastic gradient-descent routine is commonly referred to as Polyak-Ruppert
averaging. See Ruppert (1988) and Polyak and Juditsky (1992). See also Forneron (2024) for a discussion of Polyak-
Ruppert averaging in the context of estimation and inference by stochastic optimization of nonlinear econometric
models.
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iterations—outputs, with high probability, a candidate vector of multipliers that is almost ϵ > 0

away from attaining the optimal value of the dual problem in (5).5 This result has at least two other

important implications. First, the number of iterations used by the algorithm scales logarithmically

in M , which means there is no theoretical sense in which the number of iterations scales poorly as

function of how many elements there are in the null hypothesis in (1). Second, and perhaps the

most striking feature of our analysis, the unbiased estimator of the gradient defined in Equation

10 in Theorem 1 can be based on a single Monte Carlo draw from each null distributions Fm,

m = 1, . . . ,M . As expected, taking a larger number of draws improves the approximation error

of the S-MD routine, but using a small number of draws reduces the computational burden of the

algorithm.

Finally, we analyze the extent to which the output of the S-MD routine allows us to construct

a nearly optimal test for the testing problem (1). We define a test φ to be (ϵ, δ)-nearly optimal

(Definition 2) whenever i) the size of φ is at most α + δ; and ii) up to the additive constant ϵ, the

test φ rejects the null hypothesis as frequently as the most powerful test of size α. Based on this

definition, we say that a test is nearly optimal if it is (ϵ, δ)-nearly optimal for some parameters ϵ and

δ. Our third result (Theorem 3) shows that—by keeping track of the history of multipliers {κt}Tt=1

generated by the S-MD routine—it is always possible to construct a randomized nearly optimal test

with high probability. The nearly optimal test is shown to be the average of each of the tests of the

Neyman-Pearson form associated with each vector of multipliers κt generated by the S-MD routine.

We present explicit expressions for its size distortion and its power loss relative to the best test. We

note that an important challenge in reporting such a test is that, in principle, it requires keeping

track of the history of multipliers obtained from the S-MD routine. When both M and the number

of iterations of S-MD are large, this could come at a significant computational cost. To address

this issue, we show that there is a simple strategy to implement the average test: we randomize the

5The number of iterations should be interpreted as being sufficient and not necessary. In any given application, it
is possible that a smaller number could be used to output an ϵ-least favorable distribution, but the formula presented
above is valid for any null and alternative distributions.
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number of iterations uniformly between 1 and our recommended T , update the multipliers, and use

the resulting test to decided whether or not to reject the null hypothesis.

Related Literature: Although this paper focuses on the algorithm developed by Elliott

et al. (2015), there are other alternative approaches to find a test for (1). For instance, when

the sample space Y is infinite, the mathematical problem that defines the most powerful test of a

given size in the problem (1) is an infinite linear programming problem: Since the testing problems

analyzed in this paper posit M null distributions for the observed data, the corresponding linear

program has finitely many constraints but a choice variable of infinite dimension; see Section 2

below for details. If the data were discrete-valued or if we were to discretize it—as suggested by

Chiburis (2008), Moreira and Moreira (2013), and Moreira and Moreira (2019)—then one could find

the most powerful test of a given size by using any algorithm for finite linear programming. Krafft

and Witting (1967) is the seminal reference for using linear programming methods to characterize

the most powerful test of a given size.

Elliott et al. (2015) also show how the most powerful test for composite hypotheses can be

expressed as a minimax decision problem where a false rejection of H0 induces a loss of 1, and a

false rejection of H1 induces a loss of ϕ > 0 (correct choices have loss of zero). In this problem the

decision maker chooses a test φ. An adversarial nature decides which element in {F1, F2, . . . , G}

to use to generate the data; consequently, a mixed strategy for nature can be represented by a

vector in the simplex of RM+1. One could then use an algorithm for solving the corresponding

maximin problem—for example, the Hedge algorithm suggested by Aradillas Fernández, Blanchet,

Montiel Olea, Qiu, Stoye, and Tan (2025); the fictitious play algorithm suggested by Guggenberger

and Huang (2025); or a general convex optimization routine as in Chamberlain (2000). An important

limitation of this approach is that one would need to solve the maximin problem repeatedly for

different values of ϕ, until one finds a test with correct size.

Although there are no theoretical results showing that one of these algorithms is better than

another for the purpose of finding a nearly optimal test, we think that our analysis illustrates
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how a rich literature in optimization can be leveraged to provide theoretical results about the

performance of different algorithms and also to provide practical recommendations regarding their

implementation.

Outline: The rest of the paper is organized as follows. Section 2 presents notation, the

statement of the hypothesis testing problem of interest, and the primal and dual optimization

problems that arise when searching for the most powerful test of a given size. Section 3 presents

a formal definition of a stochastic mirror descent routine (S-MD) for convex optimization and also

our main results: namely, that a slight variation of the algorithm in Elliott et al. (2015) provably

generates an approximate least favorable distribution and a nearly optimal test. Section 4 uses an

elementary testing problem that arises in the context of the univariate Gaussian location model to

illustrate our main results. Section 5 discusses some extensions and Section 6 concludes. The proofs

of our main theorems and supporting lemmas are collected in Appendix A. Additional results are

collected in Appendix B.

2 Notation and Statement of the Problem

We first present the formal statement of the hypothesis testing problem analyzed in this paper.

We follow the notation and terminology used in Elliott et al. (2015) as close as possible. We then

present the dual problem that will be used to connect the iterative routine suggested by Elliott

et al. (2015) with the stochastic mirror descent algorithm for convex optimization problems.

2.1 Statement of the Hypothesis Testing Problem

We observe a random element Y that takes values in some space Y endowed with σ-algebra F . Let

ν denote a σ-finite measure defined over the measurable space (Y ,F). Let F1, . . . , FM denoteM > 1

candidate probability measures for the distribution of Y under the null hypothesis. Let G be the

candidate distribution of Y under the alternative hypothesis. Assuming all of these distributions are

6



absolutely continuous with respect to ν, Theorem 5.5.4 in Dudley (2002) guarantees the existence

of nonnegative integrable functions f1, . . . , fm, g, which can be taken as the probability density

functions of F1, . . . , Fm, G relative to ν.

Based on a single observation of Y , the testing problem of interest is

H0 : the density of Y is fm, m = 1, . . . ,M, against H1 : the density of Y is g. (2)

Using the typical jargon of hypothesis testing problems, the null hypothesis in (2) is composite,

since it contains more than one possible distributions for the data. The alternative hypothesis is

simple, in that it contains a single distribution.6

A statistical test for (2) (or simply a test) is a measurable function φ : Y → [0, 1], where φ(y) is

interpreted as the probability of rejecting the null hypothesis given that data y were observed. A

test φ is said to be nonrandomized if φ(y) ∈ {0, 1} for ν-almost every realization of Y ; otherwise

the test is said to be randomized.

The rate of Type I error under fm is the probability of rejecting the null hypothesis when Y ∼ fm

and it equals
∫
φfmdν. As usual, the size of a test is the largest rate of Type I error under the null

hypothesis. The power of a test is the probability of rejecting the null hypothesis when Y ∼ g and

it equals
∫
φgdν.

2.2 Primal and Dual Problems in Hypothesis Testing

We would like to find the most powerful test of size α for the problem (2). By definition, such a

test correctly rejects the null hypothesis as frequently as possible, but guarantees that the prob-

ability of incorrectly rejecting the null is bounded above by the prespecified constant α ∈ (0, 1).

6As explained in Section 2.2 of Elliott et al. (2015), the density g can arise by appealing to the weighted average
power criterion in cases where the alternative hypothesis is composite as well.

7



Mathematically, the problem of finding the most powerful test of size α can be written as:

sup
φ:Y→[0,1]

∫
φgdν, s.t.

∫
φfmdν ≤ α, m = 1, ...,M. (3)

We refer to the optimization problem in (3) as the primal problem associated with the hypothesis

testing problem in (2). We note that the primal problem is an infinite linear programming problem,

in the sense of Anderson and Nash (1987). The infinite linear program in (3) has finitely many

constraints but a choice variable of infinite dimension.

Define the Lagrangian function associated with the optimization problem (3) as

L(φ, κ) ≡
∫

φgdν −
M∑

m=1

κm

[∫
φfmdν − α

]
, (4)

where we refer to κ ≡ (κ1, ..., κM) ∈ RM
+ as the Lagrange multipliers (or simply, multipliers)

associated with each of the inequality constraints in the primal problem (3).

Consider thus the optimization problem on RM
+ with variable κ ≡ (κ1, ..., κM) given by

v̄ ≡ inf
κ∈RM

+

f(κ), (5)

where

f(κ) ≡ sup
φ:Y→[0,1]

L(φ, κ). (6)

We refer to the problem in (5) as the dual problem of (3).

Remark 1. The dual problem in (5) is only a device to solve the primal problem in (3). This is a

well-known fact, and we present a heuristic argument to help the exposition (relegating technical

details to Appendix B.2). Suppose that the multipliers κ∗ solve the problem (5) in that f(κ∗) = v̄.
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Then, by definition

f(κ∗) = sup
φ:Y→[0,1]

L(φ, κ∗)

=

∫
φκ∗gdν −

M∑
m=1

κ∗
m

[∫
φκ∗fmdν − α

]
,

where φκ∗ is a test of the Neyman-Pearson form; that is

φκ∗(y) ≡

 1 if g(y) >
∑M

m=1 κ
∗
mfm(y)

0 if g(y) ≤
∑M

m=1 κ
∗
mfm(y).

(7)

Lemma 1 in Elliott et al. (2015) and Theorem 3.8.1 in Lehmann and Romano (2005) imply that if

the test φκ∗ has size α under H0 then φκ∗ solves (3); that is, it maximizes power among all tests

of size at most α. The direction of the vector κ∗—namely, λ∗ ≡ κ∗/
∑M

m=1 κ
∗
m is a least-favorable

distribution in the sense of Lehmann and Romano (2005), Chapter 3, p. 84.

Remark 2. In order to justify the terminology of primal and dual problems, Section B.2 in Appendix

B formalizes the connection between the optimization problems (3) and (5), by showing that the

value functions of both problems are equal, and that a solution to the dual problem in (5) can indeed

be translated to a solution to the primal problem in (3). As usual, an important step in showing

that the solution of the dual problem can be used to solve the primal problem consists in verifying

that the complementary slackness conditions in the dual problem are satisfied. We also note that

similar duality results have been established and used elsewhere; for example, see Proposition 3.1

and Equation 3.11 of Cvitanic and Karatzas (2001).

2.3 Solving the dual problem

We have explained how the solution to the dual problem in (5) can be used to construct the most

powerful test of a given size. We now discuss the extent to which solving the dual problem is
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computationally feasible. We start by showing that the objective function in (5) is convex over RM
+ .

We also show that the vector collecting the excess rate of Type I error of the test φκ in (7) is a

subgradient of f(·) at κ.

Lemma 1. The function f(κ) defined in Equation 6 is convex. Furthermore, a subgradient of f at

κ is given by

∇f(κ) ≡ −
(∫

φκf1dν − α, ...,

∫
φκfMdν − α

)
,

where φκ is defined as in (7).

Proof. See Section A.1 of Appendix A.

Lemma 1 thus shows that dual problem in (5) has a convex objective function, and admits a

simple formula for a subgradient. We now show that the dual problem can be further simplified by

restricting the multipliers to belong to the bounded domain:

X ≡
{
κ ∈ RM

+ : ∥κ∥1 ≤
1

α

}
. (8)

Lemma 2. infκ∈RM
+
f(κ) = infκ∈X f(κ).

Proof. See Section A.2 in Appendix A.

Lemma 1 and 2 show that in order to find the multipliers associated with the dual program in

(5), it is sufficient to solve a convex optimization problem over a bounded domain (in particular,

an ℓ1-ball around the origin with radius 1/α). In the next section we show that a slight variation

of the algorithm suggested by Elliott et al. (2015) indeed approximately solves the dual problem.

3 Main Results

This section presents our main results. First, we present a formal definition of a stochastic mirror

descent (S-MD) routine for convex optimization. We then show (Theorem 1) that a slight modifi-
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cation of the updating equation in the algorithm suggested by Elliott et al. (2015) corresponds to

an S-MD update when the mirror map is set to be equal to the negative entropy. Second, we define

an approximate least-favorable distribution and show that S-MD provably obtains an approximate

least favorable distribution (Theorem 2). Finally, we define a nearly optimal test and show that the

S-MD routine can be used to generate such a test (Theorem 3).

3.1 Stochastic Mirror Descent

This section follows as closely as possible the notation in Sections 4.1 and 6.1 of Bubeck (2015).

Let RM
++ denote the set of all strictly positive vectors in RM . We say that a map Φ : RM

++ → R is a

mirror map if it satisfies the following properties

i) Φ is strictly convex and differentiable.

ii) The gradient of Φ takes all possible values, that is ∇Φ(RM
++) = RM .

iii) The gradient of Φ diverges on the boundary of RM
++.

Mirror Maps are used to build iterative algorithms for constrained optimization problems when

unbiased estimators of the gradient are available. More precisely, consider the optimization problem

inf
κ∈X

f(κ),

where f : X → R is a convex function and X ⊆ RM
+ . Suppose that Ĝ(κ) is an unbiased estimator

of a subgradient of f at κ, in the sense that E
[
Ĝ(κ)

]
is a subgradient of the function f at κ.7 Let

DΦ(κ, κ
′) denote the Bregman divergence associated with Φ, that is

DΦ(κ, κ
′) ≡ Φ(κ)− Φ(κ′)−∇Φ(κ′)(κ− κ′).

7The expectation should be understood as being conditional on κ, since κ is stochastic. See Chapter 6 in Bubeck
(2015).
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The stochastic mirror descent algorithm (henceforth, S-MD) given the mirror map φ is defined as

follows:

Algorithm 1 Stochastic Mirror Descent with mirror map Φ, stopped after T epochs.

1: Input: Step size η > 0, number of epochs T ∈ N.
2: Initialize κ1 ∈ argminκ∈X∩RM

++
Φ(κ).

3: for t = 1, . . . , T − 1 do
4:

κt+1 = arg min
κ∈X∩RM

++

η
(
Ĝ(κt)

⊤κ
)
+DΦ(κ, κt). (9)

5: end for
6: Output: κ̄T ≡ 1

T

∑T
t=1 κt.

The general interpretation of the S-MD update in equation (9) is that “the method is trying to

minimize the local linearization of the function while not moving too far away from the previous

point, with distances measured via the Bregman divergence of the mirror map”; see p. 301 in Bubeck

(2015).

An important observation regarding Algorithm 1 is that its output is the average value of κt

over all the iterations, and not its last value. Averaging the trajectories of a stochastic optimization

routine is commonly referred to as Polyak-Ruppert averaging; see Ruppert (1988) and Polyak and

Juditsky (1992). This idea goes back to seminal work on mirror descent by Nemirovski and Yudin

(1983).

The following theorem shows that a slight modification of the updating equation in the algorithm

suggested by Elliott et al. (2015) (see their Equation 10, p. 782) corresponds to an S-MD update

when the mirror map is set to be equal to the negative entropy.

Theorem 1. Consider the optimization problem infκ∈X f(κ), where f(·) is defined in (6) and the

set X is defined in (8).

1. Let κt be a realization of an arbitrary X -valued random vector. For each m = 1, . . . ,M , let

Ym,1, ..., Ym,N be i.i.d. random variables with distribution Y ∼ fm sampled independently of
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the realized value of κt. For any N ≥ 1

ĜN(κt) ≡ −

(
1

N

N∑
n=1

φκt(Y1,n)− α, ...,
1

N

N∑
n=1

φκt(YM,n)− α

)⊤

, (10)

is an unbiased estimator of the subgradient of f at κt; where φκt is a test of the Neyman-

Pearson form defined in (7).

2. The stochastic mirror descent update in Algorithm 1 based on ĜN(·) and the mirror map

Φ(κ) =
∑M

m=1 κm ln(κm) is

κt+1,m = ct · κt,m exp
(
−η · Ĝm,N(κt)

)
, (11)

where Ĝm,N(κt) is the m-th coordinate of ĜN(κt) and

ct ≡ min

1,
1

α
∑M

m=1 κt,m exp
(
−η · Ĝm,N(κt)

)
 .

3. The initial condition in Algorithm 1 based on the mirror map Φ(κ) =
∑M

m=1 κm ln(κm) is

κ1 =


(

1
exp(1)

, . . . , 1
exp(1)

)
, if 1 ≤ M < exp(1)

α
,(

1
αM

, . . . , 1
αM

)
if M ≥ exp(1)

α
.

(12)

Proof. See Section A.3 in Appendix A.

It is useful to make an explicit connection between the updating formula in (11) and Equation

10, p. 782 in Elliott et al. (2015). Following the notation in Elliott et al. (2015), define

µt+1
m ≡ ln(κt+1,m).
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Taking logarithms on both sides of (11) and using the definition of ĜN(κt) yields

µt+1
m = ln(ct) + µt

m + η

(
1

N

N∑
n=1

φexp(µt)(Ym,n)− α

)
. (13)

When ct = 1, the term ln(ct) = 0, and thus, (13) essentially matches Equation 10, p. 782 in Elliott

et al. (2015) after noting that Ĝm,N(κt) is a Monte Carlo estimate of the negative excess rate of

Type I error the test φκt :

α−
∫

φln(µt)fmdν.

Other than notation, the main difference between our expressions is the presence of the additional

term ct. In the stochastic mirror descent routine, this term is used to take into account the fact

that—because of our Lemma 2—the optimization domain in the dual problem (5) can be restricted

to values of κ such that
∑M

m=1 κm ≤ 1/α.

3.2 Approximate Solutions to the Dual Problem

In this subsection we show that if the number of epochs (T ) and the step size (η) are chosen

appropriately, then κ̄T ≡ (1/T )
∑T

t=1 κt—obtained using Equations 11 and 12 in Theorem 1—

indeed can be used to generate an approximate least-favorable distribution for the problem in (1).

In order to formalize this statement, note that we have defined v̄ as the value of the dual problem

infκ∈X f(κ), where f(·) is defined in (6) and the set X is defined in (8). Let

∆M−1 ≡

{
λ ∈ RM | λm ≥ 0 for all m = 1, . . . ,M and

M∑
m=1

λm = 1

}
(14)

denote the probability simplex in RM .

Definition 1 (ϵ-least favorable distribution). We say that a vector λ∗
ϵ ∈ ∆M−1 is an ϵ-least favorable
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distribution if there exists a positive constant cv∗ϵ such that

κ∗
ϵ ≡ cv∗ϵ · λ∗

ϵ

satisfies

f(κ∗
ϵ) ≤ v̄ + ϵ, (15)

where f(·) is defined in (6). We say that a vector λ∗ ∈ ∆M−1 is an approximate least-favorable

distribution if there exists ϵ > 0 for which λ∗ is ϵ-least favorable.

Remark 3. The definition presented above is different from the notion of “ϵ-approximate least

favorable distribution” used by Elliott et al. (2015); see their Definition 1, p. 780. Their definition

focuses on the statistical properties of the Neyman-Pearson test associated with the least-favorable

distribution. In contrast, we focus on the optimization problem that defines such a least-favorable

distribution: the dual problem we presented in (5). Our definition is inspired by a large literature in

theoretical computer science, operations research, and optimization where it is a common approach

to “to relax the requirement of finding an optimal solution, and instead settle for a solution that is

good enough” (Williamson and Shmoys, 2011, p. 14). There are different criteria that can be used

to formalize the statement that an approximate solution is “good enough”, but a typical choice

in optimization problems relies on its value function (which is the metric we use in our Definition

1). We deliberately chose an additive approximation error, because most of the results that we are

familiar with regarding the approximation error of mirror descent routines—and, more generally,

first-order methods for convex optimization problems—take this form; see, for example, Section

5.1.1 in Juditsky and Nemirovski (2011) and also Bubeck (2015). But it is also possible to give

results for multiplicative approximation errors; for example, see Theorem 1 in Chen, Lucier, Singer,

and Syrgkanis (2017).

We now present a result showing that Algorithm 1 provably generates an approximate least-

favorable distribution. For any nonnegative real number x, let ⌈x⌉ denote the “ceiling function”;
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that is smallest integer larger than x.

Theorem 2. Consider the optimization problem infκ∈X f(κ), where f(·) is defined in (6) and the

set X is defined in (8). Let κT be the output of Algorithm 1 based on the mirror map Φ(κ) =∑M
m=1 κm ln(κm) and the unbiased estimator of the gradient ĜN(·) defined in Equation 10 of Theorem

1. If α ∈ (0, 1/2) and M > exp(1)/α,

T =

⌈
4(1− α)2

α2ϵ2
· ln(M)

⌉
, and η = α · ϵ

2(1− α)2
, (16)

then

λ∗
T ≡ κT∑M

m=1 κT,m

(17)

is a

(
1 + 2Ω√

ln(M)N(1−α)2

)
ϵ-least favorable distribution, in the sense of our Definition 1, with prob-

ability at least 1− exp (−Ω2).

Proof. See Section A.4 in Appendix A.

Theorem 2 shows that—even after finitely many iterations—the S-MD routine for the dual problem,

inf
κ∈X

f(κ),

generates an approximate least-favorable distribution (in the sense of our Definition 1) with high

probability. The approximate least favorable distribution in (17) is the direction of the multipliers

κT (in analogy to what we would do if we had access to the exact solution of the dual problem).

The probabilistic statement in the theorem arises due to the randomness in the gradient estimator

in (10), which makes the output of the S-MD routine behave as a random variable. Note that if

we fix the frequency at which we would like to obtain an approximate least-favorable distribution

(over different runs of the S-MD routine), then the number of draws used to construct the gradient

estimator (N) determines how close we get to finding a “good enough” solution for the dual problem.

16



For example, suppose that ϵ = .1, α = 10% and M = 200, and suppose we set Ω =
√

ln(1/α),

so that 1− exp(−Ω2) = 1− α = 90%. If we run the S-MD routine using N = 1 (only one draw per

density fm), then with probability 90% we will obtain a

(
1 + 2

√
ln(1/α)

ln(M)(1− α)2

)
ϵ ≈ 2.5ϵ = .25

least-favorable distribution. If we use N = 10 (only ten draws per density) we get a

(
1 + 2

√
ln(1/α)

ln(M) · 10 · (1− α)2

)
ϵ ≈ 1.5ϵ = .15

least favorable distribution. If we use N = 100, with probability 90% we get a 1.15ϵ = .11-least

favorable distribution. More generally, Theorem 2 shows that, for any target probability, we can

always make N large enough to get as close as we would like to the desired approximation error ϵ.

In our view, the most surprising part of Theorem 2 is that even if the number of draws per

density used to implement the S-MD routine are as low as N = 1, it is still possible to get an

approximate least-favorable distribution that provides a non-trivial approximate solution to the

dual problem in (5). For instance, in the example above, using only one draw per density yields an

approximation error of 2.5ϵ = .25 with probability 90%. The approximation error of .25 should be

interpreted as a worst-case guarantee that applies to any testing problem of the form (1). As we

show in our illustrative example, the resulting approximation error can, in practice, be considerably

smaller.

3.3 Nearly Optimal Tests via Stochastic Mirror Descent

Now that we have established that the S-MD routine in Algorithm 1 (with negative entropy as a

mirror map) provably generates an approximate least-favorable distribution—in the sense of our

Definition 1—we discuss the extent to which the S-MD routine can also be used to generate a nearly
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optimal test.

Before presenting a formal definition of what we mean by a nearly optimal test, it is helpful

to explain why it is not entirely trivial to translate the approximate least-favorable distribution in

Equation 17 into a nearly optimal test. Let κ∗
T be the multipliers that we obtain after running the

S-MD routine, with T and η defined as in Theorem 2. Consider the test of the Neyman-Pearson

form, φκ∗
T
, defined in (7) based on the multipliers κ∗

T .
8 Since the S-MD routine never explicitly

tried to enforce size control, it is possible that the size of φκ∗
T
is strictly above the nominal level

α. Mathematically, this happens because an approximate optimizer to the dual problem does not

necessarily imply a feasible solution to the primal problem (let alone a nearly optimal one). This

suggests that, when defining a nearly optimal test, it could be helpful to take into account i) possible

violations of the required size; ii) as well as potential loss in power, relative to the optimal solution.

Let v̄ be defined as value function of the dual problem in (5). As we show in Section B.2 of

Appendix B, duality holds, and v̄ equals the power of the most powerful test of size α.9

Definition 2. A statistical test φ⋆
ϵ,δ : Y → [0, 1] is said to be (ϵ, δ)-nearly optimal of size α if:

1. The size of φ⋆
ϵ,δ is no larger than α(1 + δ),

∫
φ⋆
ϵ,δfmdν ≤ α(1 + δ), for all m = 1, . . . ,M.

2. The power of φ⋆
ϵ,δ is at most ϵ away of the maximum power of a test of size α,

∫
φ⋆
ϵ,δgdν ≥ v̄ − ϵ.

8Note that κ∗
T can be decomposed into its direction λ∗

T as in Equation 17 and its norm cv∗T ≡
∑M

m=1 κ
∗
T,m. Thus,

the test in (7) rejects the null if and only if

g(y) > cv∗T

M∑
m=1

λ∗
T,mfm(y).

9For the sake of exposition, we deliberately write v̄ instead of v̄(α).

18



We say that test φ∗ is nearly optimal of size α, if there exists ϵ, δ > 0 for which φ∗ is (ϵ, δ)-nearly

optimal.

The following theorem shows that Algorithm 1 can provably be used to generate a nearly optimal

test.

Theorem 3. Consider the optimization problem infκ∈X f(κ), where f(·) is defined in (6) and the

set X is defined in (8). Let {κt}Tt=1 be the sequence of multipliers generated by Algorithm 1 based on

the mirror map φ(κ) =
∑M

m=1 κm ln(κm) and the unbiased estimator of the gradient ĜN(·) defined

in Equation 10 of Theorem 1. If M > exp(1)/α,

T =

⌈
4(1− α)2

α2ϵ2
· ln(M)

⌉
, and η = α · ϵ

2(1− α)2
,

then the test

φ̄T (y) ≡
1

T

T∑
t=1

φκt(y) (18)

is nearly optimal of size α with high probability (where φκt is the test of the Neyman-Pearson form

in (7)). More concretely, with probability at least 1− exp(−Ω2)

1. For any m = 1, . . . ,M ,

∫
φ̄Tfmdν ≤ α

(
1 +

[
1 +

2Ω√
ln(M)N(1− α)2

]
ϵ− 1

T

T∑
t=1

ĜN(κt)
⊤κt

)
. (19)

2. The power of φ̄T is larger than

v̄ −

[
1 +

2Ω√
ln(M)N(1− α)2

]
ϵ. (20)

Proof. See Section A.5 in Appendix A.

Theorem 3 shows that the S-MD routine analyzed in this paper provably generates a nearly optimal
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test, in the sense of our Definition 2. There are three aspects about our result that are worth

highlighting.

First, it is rather surprising that the nearly optimal test in (18) takes the form of an “average”

test. In order to get some intuition of why this construction is helpful to obtain theoretical results,

it is useful to explicitly write the dual in (5) as the minimax problem

min
κ∈RM

+

max
φ

L(φ, κ),

where L(φ, κ) is the Lagrangian function defined in (4). In this problem, the “min” player is choosing

a vector of (Lagrange) multipliers, and the “max” player is choosing a test. For a fixed κ, the best

response of the max player is a test of the Neyman-Pearson form φκ defined in (7). A mirror descent

routine for this problem initializes the choice of κ by the “min” player, and iteratively updates its

values based on the (sub)gradient of the Lagrangian with respect to κt, which—by results analogous

to the envelope theorem—will give the rates of Type I error of φκt . The most powerful test of size

α is the solution to the maximin problem

max
φ

min
κ∈RM

+

L(φ, κ).

The question is how to translate the iterates, {κt}Tt=1, into a solution to the maximin problem.

This question is common in the application of the mirror descent algorithm to minimax problems

that arise in game theory and statistical decision theory; see Aradillas Fernández et al. (2025) and

the discussion of matrix games in Arora, Hazan, and Kale (2012). While these papers consider

different problems to the one studied in this paper, a suggestion therein is to use the best responses

of the max player {φκt}Tt=1 and randomize over them with uniform probability. In our problem,

such a construction becomes the average test in (18); and this is what motivated us to study its

performance. To the best of our knowledge, our results have not been stated elsewhere.

Second, the upper bound on the rate of Type I error features a term whose value changes with
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each specific run of the S-MD routine. This is not ideal, but we were not able to derive a better

bound. To better understand the role of this term, consider again the example we discussed after

Theorem 2. Suppose that ϵ = .1, α = 10% and M = 200, and suppose we set Ω =
√
ln(1/α), so

that 1 − exp(−Ω2) = 1 − α = 90%. If we run the S-MD routine using N = 1 (only one draw per

density fm),

1 +

[
1 + 2

√
ln(1/α)

ln(M)(1− α)2

]
ϵ ≈ 1 + 2.5ϵ = 1.25.

If the term

− 1

T

T∑
t=1

ĜN(κt)
⊤κt, (21)

were not part of (19), then we could conclude that with probability at least 90%, the test φ̄T has

size of at most 12.5% (that is, there is a size distortion of 2.5%) and power that is no less than v̄

minus 25 percent points. Again, making N arbitrarily large makes the size closer to α(1 + ϵ) and

the power at least v̄ − ϵ. The interpretation of Theorem 3 changes slightly when we incorporate

(21). Suppose for example that in one run of the S-MD routine the term in (21) equals .05. Then,

for that run, our best hope is that (19) is satisfied with the larger bound 1.3 instead of 1.25. This

means that we could see a rate or Type I error of the average test as high as 13%. As we discuss in

the next section, in our illustrative example the term in (21) tends to be small (and negative), but

we do not have any theoretical guarantees for this.10

Third, to report the entire test (as function of all possible data), one would have to retain

the history of multipliers obtained from the S-MD routine. When both M and the number of

iterations of S-MD are large, this could come with significant computational and data storage

expense. However, a typical use case is to perform the test on a specific data set. For this purpose,

data storage requirements can be much reduced because, rather than retaining the weights for every

epoch, it suffices to store the implied test results, i.e. one bit per epoch and parameter value being

10The terms −ĜN (κt)
⊤κt is a Monte-Carlo estimate of the average excess rate of Type I error of φκt

, evaluated
at the different null densities. The term in (21) averages these Monte-Carlo estimates over all iterations.
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tested (and even less if one is content with only updating the average). Furthermore, rather than

reporting a rejection probability, it usually suffices to either accept or reject, although in cases where

the rejection probability is interior, this decision will then be random conditionally on the data. But

this can be achieved at much lower computational expense: (ii) By a simple application of the Law

of Iterated Expectations, rejecting with probability corresponding to the average test is equivalent

to first drawing a “realized epoch” t∗ ∼ unif({1, . . . , T}) and then executing the Neyman-Pearson

test for epoch t∗ only. (iii) As t∗ can be drawn before starting the iteration, it is only necessary to

execute iterations up to epoch t∗, threreby only executing T/2 iterations in expectation. By using

these simplifications, it should be easy to execute the test.

An alternative to the average test is to simply report the Neyman-Pearson test in (7) asso-

ciated with the multipliers κ̄T obtained as the output of Algorithm 1 based on the mirror map

Φ(κ) =
∑M

m=1 κm ln(κm) and the unbiased estimator of the gradient ĜN(·) defined in Equation 10

of Theorem 1. While it is challenging to analyze the size and power properties of this test for finite

T , in Appendix B.3.1 we show that, under some conditions, as T → ∞ the power of the test will

converge to v̄, and it will have correct size (in a sense we make precise).

3.4 Remarks on Confidence Regions

It is common to construct confidence regions by inverting tests. However, the test advocated here

is in general randomized, raising the question of how to invert it. Conceptual discussions of this

matter go back at least to the 1950’s (Stevens, 1950; Lehmann, 1959).11 To summarize some key

points, for this paragraph only let the test function ρ(·) also depend on the parameter value to be

tested, i.e. we temporarily define ρ : Y × Θ → [0, 1], where ρ(y, θ) is the probability of rejecting

the instance of H0 characterized by parameter value θ given data y; Lehmann (1959) calls this the

critical function. Then we can define no less than four intervals that arguably invert our test:

11A notable difference to our setting is that these discussions were motivated by the randomized nature of optimal
or exact tests in highly discrete sample spaces.
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1. Lehmann (1959) defines a randomized confidence region as the set {θ : ρ(y, θ) ≤ u}, where u is

a realization of U ∼ unif(0, 1), reflecting data-independent randomization by the statistician.

2. Geyer and Meeden (2005) propose to directly report 1−ρ(y, θ) as function of θ and to interpret

it as membership function of a fuzzy set; it is easy to see that expected membership of the

true parameter value will correspond to the target coverage.

3. Similarly to our discussion just above, one could draw a random epoch t∗ and invert the

corresponding (nonrandomized) Neyman-Pearson test.

4. Again similar to previous discussion, one could invert the Neyman-Pearson test that utilizes

average weights κ̄T .

Mirroring discussions in the previous subsection, idea 4 is the computationally most involved and

its justification is asymptotic, idea 3 will be the computationally easiest, and idea 1 is intermediate;

2 is computationally equivalent to 1. Some users might find 2 hard to interpret (Berger and Casella,

2005). We leave further analysis of the issue to future research.

4 Illustrative Example

In order to illustrate the performance of the SM-D routine in Algorithm 1—along with the im-

plications of the theoretical guarantees in Theorem 2 and Theorem 3—we consider an elementary

testing problem that arises in the context of the univariate Gaussian location model. More precisely,

suppose we observe a realization of the random variable

Y ∼ N (θ, 1).

The location parameter, θ, is unknown to the econometrician. Let Θ0 ≡ {θ0,1, . . . , θ0,M} be an

equally-spaced grid over the interval [−5, 0] consisting of M = 200 points. We order the elements
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of Θ0 in decreasing order, so that θ0,1 = 0. We also define the singleton set Θ1 ≡ {θ1}.

We assume that the econometrician is interested in the following hypothesis testing problem:

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1.

It is well known that the most powerful test of size α for this problem—which we denote as φ∗
α—

rejects the null if Y is large enough. More precisely, φ∗
α(Y ) ≡ 1{Y ≥ z1−α}, where z1−α is the 1−α

quantile of a standard normal. The power of this test can then be expressed in terms of the normal

c.d.f. as Pr(N(0, 1) ≤ θ1 − z1−α). Since the most powerful test of size α for this example is known,

we can use this information to analyze the theoretical guarantees we provided in Theorem 2 and

Theorem 3.

The Stochastic Mirror Descent (S-MD) Routine: We first obtain a nearly optimal test of size

α = 10%. We set θ1 = 2, which means that the largest power of a test of size α = 10% is

Φ(2− 1.28) ≈ 76.38%. This is also the value of the dual problem in (5). We set ϵ = .1, and use the

formulae in Theorem 2 to determine the maximum number of iterations (T ) and the learning rate

(η) for the S-MD routine:

T =

⌈
4(1− α)2

α2ϵ2
· ln(M)

⌉
= 171, 666, η = α · ϵ

2(1− α)2
= .0062. (22)

In this example M = 200 > (exp (1) /α) = exp(1) · 10. Thus, in accordance with our theoretical

derivations, the initial condition for the S-MD routine (κ0 ∈ RM) is chosen to be:

κ0 = (1/(αM), . . . , 1/(αM))⊤ = (.05, . . . , .05)⊤.

The main component of the S-MD routine is the stochastic mirror descent update. We implement

the unbiased estimator of the gradient in Theorem 1 using only one draw per density; that is, N = 1.

More precisely, if we let fm(·) denote the p.d.f. of Y under the null hypothesis θ0,m ∈ Θ0 and we let
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g(·) be the p.d.f. of Y under the alternative Θ1, the mirror descent update necessitates an unbiased

estimator of the rates of Type I error of the test

φκ(Y ) ≡ 1

{
g(Y ) >

M∑
m=1

κmfm(Y )

}
. (23)

In our example, an unbiased estimator for the rate of Type I error at θ0,m can be succinctly obtained

by sampling Z ∼ N(0, 1) and using φκ(Z+θ0,m) as an estimator. More precisely, in each epoch t we

obtain one draw Zt ∼ N (0, 1) and compute the mirror descent update (coordinate by coordinate)

as

κm,t+1 ≡ κm,t · exp (η [φκt(Zt + θ0,m)− α]) , for each m = 1, . . . ,M.

The intuition of the update is very simple. If φκ(Z + θ0,m)—the unbiased estimator of the rate

of Type I error of φκt at θ0,m—is larger than α, then κm,t+1 increases (and otherwise decreases).

We also know that ∥κt∥1 must be less than or equal than 1/α. Thus, after the update we check if

∥κt+1∥ ≤ 1/α. If this is the case, we keep κt+1 as is; but otherwise we normalize κt+1 to guarantee

that
∑M

m=1 κm ≤ 1/α. This gives us back the update described in part 2 of Theorem 1.

In general, updating κt is numerically very cheap when N = 1, as it only involves obtaining

one sample from each of the null densities (along with the evaluation of the null and alternative

densities at each draw) and also evaluation of the exponential function. Using Matlab R2024a on

a personal ASUS Vivobook Pro 15 @ 2.5GHz Intel Core Ultra 9 185H, it took around 280 seconds

(slightly less than 5 minutes) to complete all of the T = 171, 666 iterations.

Approximate Least-Favorable Distribution: As suggested by our Theorem 2, in order to construct

an approximate least-favorable distribution we standardize the average value of κt to represent it

as a probability distribution. More precisely, the blue bars in Figure 1 below correspond to

λT ≡ κ̄T

∥κ̄T∥1
, where κ̄T ≡ 1

T

T∑
t=1

κt.
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In the testing problem we are considering, it is known that the least-favorable distribution loads all

of its mass on θ0,1. As Figure 1 shows, the output of the S-MD routine resembles such distribution.
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Figure 1: λT ≡ κ̄T/∥κ̄T∥1 for α = 10% and ϵ = 0.1; where κ̄T = (1/T )
∑T

t=1 κt.

Our definition of approximate least-favorable distribution in Definition 1 makes reference to the

value function of the dual problem in (5), and not in terms of its minimizer. In this example, it

is easy to show that the value of the dual (which we denoted by v̄) equals 76.38% (the power of

the most powerful test of size α = 10%). We now argue that, as expected, the distribution λT

approximately solves the dual problem, in the sense of Definition 1. To see this, we just need to

evaluate the function:

f(κ̄T ) =

∫
φκ̄T

g(y)dy︸ ︷︷ ︸
≈76.96%

−
M∑

m=1

κ̄T,m

(∫
φκ̄T

(y)fm(y)dy − α

)
︸ ︷︷ ︸

−1.01%

≈ 77.97%,

where ϕκ̄T
is the test of Neyman-Pearson form defined in (7), and where a Monte-Carlo approxima-
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tion with 100,000 draws is used for the evaluation of each of the integrals. Thus, in this example:

f(κ̄T ) ≈ 77.97% < v̄ + ϵ = 76.38% + 10% = 86.38%.

This means that in our run of the S-MD routine we obtained an ϵ = .016-least-favorable distribution.

The quality of the approximation is much better than what we expected based on our theoretical

results in Theorem 2. This is consistent with the fact that the results in Theorem 2 apply to

every possible testing problem with M null densities and a single alternative. We also conducted

a Monte-Carlo simulation where we implemented the S-MD routine with different draws for the

estimation of the subgradient, with 10,000 draws being used for integral evaluation in each. In all

of the 100 runs we obtain a 10%-least favorable distribution. This is consistent that the theoretical

results we presented in Theorem 2 apply to any testing problem of the form (1).

Nearly Optimal Test φ̄T : Figure 2 reports the test φ̄T (red, solid line), which is the test defined in

(18). For comparison, we also report the test φκ̄T
(blue, solid line). The size of φ̄T is approximately

10.22%, and its power is approximately 76.98%. This means that the test φ̄T is slightly over-sized,

but it has competitive power.

We also conducted 100 different runs of our S-MD routine. In all of the 100 hundred runs the

size was at most α(1 + ϵ) and the lowest power achieved was 76.82%.

Time Comparison of Using More Draws in the S-MD Routine: We also analyzed the increased

computational effort of increasing the number of draws used to evaluate the subgradient during

each iteration. To do this, we re-ran our illustrative example using 1, 10, 100, and 1,000 draws

in each round. Table 1 shows the runtime as a function of the number of draws. Lastly, we also

calculated the expected runtime associated with 20,000 draws in each round—the number of draws

recommended by Elliott et al. (2015). Our expected runtime was 369,697 seconds.12 We think these

results illustrate the computational gains of implementing the S-MD routine with a small number

12This estimate was generated by taking the time difference between the first and second round, and then multi-
plying by T .
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Figure 2: φ̄T (red) alongside φκ̄T
(blue) for α = 10% and ϵ = .1.

Draws Runtime (seconds)
1 314
10 882
100 4,028
1,000 36,320

Table 1: Number of draws in S-MD routine during each round versus runtime.

of draws to evaluate the subgradient.

5 Approximately Unbiased Tests

Consider now a variation of the testing problem in (1) where the alternative hypothesis is also

composite, but with only I possible distributions for the data:

H0 : the density of Y is fm, m = 1, . . . ,M, vs. H1 : the density of Y is gi, i = 1, . . . , I.

(24)
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As explained in Section 2.2 of Elliott et al. (2015), one can reduce the problem in (24) to the

problem in (1) by choosing weights w ≡ (w1, . . . , wI) ∈ ∆I−1 and defining g ≡
∑I

i=1wigi. Then,

the test φ that solves (3) can be interpreted as the test that maximizes w-weighted average power

among all tests of size at most α.

A common criticism of tests that maximize a weighted average power criterion (henceforth,

WAP) is that they can be biased : their power for some density gi can be lower than α(Moreira and

Moreira, 2013; Andrews, 2016). Moreira and Moreira (2013) note that one could include additional

constraints in the problem (1) and consider:

sup
φ:Y→[0,1]

∫
φgdν, s.t.

∫
φfmdν ≤ α, m = 1, ...,M,

∫
φgidν ≥ α, i = 1, . . . , I. (25)

Just as before, we can define the Lagrangian function associated with problem (25) as

L(φ, κ, µ) ≡
∫

φgdν −
M∑

m=1

κm

[∫
φfmdν − α

]
−

I∑
i=1

µi

[∫
φ(−gi)dν + α

]
, (26)

where we refer to κ ≡ (κ1, ..., κM) ∈ RM
+ as the Lagrange multipliers associated with each of the

inequality constraints that bound the test’s rate of Type I error, and we let µ ≡ (µ1, ..., µI) ∈ RI
+

denote the Lagrange multipliers associated with each of the inequality constraints preventing the

test to be biased.

We could then proceed as we did before and define the dual optimization problem:

inf
κ∈RM

+ , µ∈RI
+

f(κ, µ), (27)

where

f(κ, µ) ≡ sup
φ:Y→[0,1]

L(φ, κ, µ). (28)

It is possible to show that the function f(κ, µ) is convex in its arguments. Moreover, a test φ that
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achieves the maximum is the test

φκ,µ(y) ≡

 1 if g(y) >
∑M

m=1 κmfm(y)−
∑I

i=1 µigi(y),

0 if g(y) ≤
∑M

m=1 κmfm(y)−
∑I

i=1 µigi(y),
(29)

and a subgradient of f(·) at (κ, µ) is

∇f(κ, µ) ≡ −
(∫

φκ,µf1dν − α, ...,

∫
φκ,µfMνdν − α,

∫
φκ,µ(−g1)dν + α . . .

∫
φκ,µ(−gI)dν + α

)
.

If ∇f(κ, µ) were known, the mirror descent routine (with negative entropy as mirror map) for

this problem would have updates

κt+1,m = κt,m exp (−η · ∇f(κt, µt)) ,

µt+1,i = µt,i exp (−η · ∇f(κt, µt)) .

Establishing a result similar to Theorem 2 and 3 is more challenging because the application of

standard results would need ex-ante constraints on the ∥ · ∥1-norm of κ and µ. But, for example,

if one knew that the optimal values of κ and µ satisfied the constraint ∥κ + µ∥1 < 1/α then our

previous theoretical results for S-MD would apply.

6 Conclusion

We showed that—in testing problems where the null hypothesis postulates M distributions for the

observed data—a slight variation of the algorithm in Elliott et al. (2015) coincides with a stochastic

mirror descent routine for convex optimization. The convex program that arises naturally in the

testing problem in (1) is the dual of the mathematical program that defines the most powerful test

of size α.
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We show that, given a desired approximation error, one can use a stochastic mirror descent

routine to provably obtain—after finitely many iterations—both an approximate least-favorable

distribution and a nearly optimal test.

Our theoretical results allowed us to provide concrete recommendations about the algorithm’s

implementation: including its initial condition, its step size, the number of iterations, and the

number of stochastic draws per iteration that can be used to approximate the subgradient of the

objective function. These practical recommendations have at least two important implications.

First, the number of iterations used by the algorithm scales logarithmically in M (which means

there is no theoretical sense in which the algorithm scales poorly as a function of the elements in

the null hypothesis). Second, the algorithm can be implemented with a single stochastic draw per

null density in each iteration (taking a larger number of draws improves the approximation error

of the S-MD routine, but using a small number of draws reduces the computational burden of the

algorithm).
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A Proofs of Main Results

A.1 Proof of Lemma 1

Proof. To prove convexity, note that by definition

f(λκ+ (1− λ)κ′) = sup
φ

∫
φgdν −

M∑
m=1

(λκm + (1− λ)κ′
m)

[∫
φfmdν − α

]
,

where we have slightly abused notation by omitting the fact that φ is allowed to be an arbitrary

element of the space of all randomized tests. Consequently,

f(λκ+ (1− λ)κ′) ≤ λ sup
φ

{
φgdν −

M∑
m=1

κm

[∫
φfmdν − α

]}

+ (1− λ) sup
φ

{∫
φgdν −

M∑
m=1

κ′
m

[∫
φfmdν − α

]}

= λf(κ) + (1− λ)f(κ′).

Therefore, f is convex in κ.

To show that ∇f(κ) is a subgradient of f at κ ∈ RM
+ , we need to show that for any κ′ ∈ RM

+

f(κ) ≤ f(κ′) +∇f(κ)(κ− κ′).

Note first that the test φκ solves the problem

sup
φ:Y→[0,1]

∫
φgdν −

M∑
m=1

κm

[∫
φfmdν − α

]
. (30)

We can then rewrite (30) as

sup
φ:Y→[0,1]

∫
φ

(
g −

M∑
m=1

κmfm

)
dν + α

M∑
m=1

κm.
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Consequently,

f(κ) =

∫
φκgdν −

M∑
m=1

κm

[∫
φκfmdν − α

]

=

∫
φκgdν −

M∑
m=1

(κm − κ′
m)

[∫
φκfmdν − α

]

−
M∑

m=1

κ′
m

[∫
φκfmdν − α

]

=

∫
φkgdν −

M∑
m=1

κ′
m

[∫
φκfmdν − α

]
+∇f(κ)(κ− κ′)

≤ f(κ′) +∇f(κ)(κ− κ′).

A.2 Proof of Lemma 2

Proof. Since X ⊂ RM
+ we have

inf
κ∈RM

+

f(κ) ≤ inf
κ∈X

f(κ).

Thus, it is sufficient to show that

inf
κ∈RM

+

f(κ) ≥ inf
κ∈X

f(κ).

Suppose this is not the case and that

v̄ ≡ inf
κ∈RM

+

f(κ) < inf
κ∈X

f(κ).

By definition of infimum, for any ϵ > 0 there exists κϵ ∈ RM
+ such that

v̄ ≤ f(κϵ) < v̄ + ϵ.
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By choosing ϵ small enough, we can guarantee the existence of an element κϵ ∈ RM
+ such that

f(κϵ) < v̄ + ϵ < inf
κ∈X

f(κ).

Since X and
(
RM

+ \X
)
form a partition of RM

+ , it must be the case that either κϵ ∈ X or κϵ ∈(
RM

+ \X
)
. Clearly, we cannot have κϵ ∈ X (as this would immediately yield a contradiction). Thus,

we must have κϵ ∈
(
RM

+ \X
)
.

Note that at κ = 0,

f(0) =

∫
φ0gdν ≤

∫
gdν = 1.

But also, for any κ such that ∥κ∥1 > 1/α,

f(κ) = sup
φ:Y→[0,1]

∫
φ

[
g −

M∑
m=1

κmfm

]
dν + α

M∑
m=1

κm ≥
M∑

m=1

κmα > 1.

Therefore,

1 < f(κϵ) < inf
κ∈X

f(κ) ≤ f(0) ≤ 1.

This yields a contradiction. We conclude that v̄ ≡ infκ∈RM
+
f(κ) = infκ∈X f(κ).

A.3 Proof of Theorem 1

Proof of Part 1 of the Theorem: Let κt be a realization of an arbitrary X -valued random

vector. Let Ĝm,N(κt) be the m-th coordinate of ĜN(κt). If suffices to show that if (Ym,1, . . . , Ym,N)

are i.i.d. random variables with distribution Y ∼ fm sampled independently of the realized value

of κt, then E[Ĝm,N(κt)|κt] = −
(∫

φκfmdν − α
)
.

38



By definition of Ĝm,N(κt),

E[Ĝm,N(κt)|κt] = −E

[
1

N

N∑
n=1

φκt(Ym,n)
∣∣∣κt

]
+ α

= E
[
φκt(Ym,n)

∣∣∣κt

]
+ α,

where the last line follows from the fact that (Ym,1, . . . , Ym,N) are i.i.d. according to fm, indepen-

dently of the value of κt. Since fm is the p.d.f. of Y relative to the σ-finite measure ν, Problem 1,

Chapter 5, p. 177 of Dudley (2002) implies

E
[
φκt(Ym,n)

∣∣∣κt

]
=

∫
φκtfmdν.

Therefore, ĜN(κt) is an unbiased estimator of the subgradient of f at the realized κt.

Proof of Part 2 of the Theorem: Let ĜN(κt) be the unbiased estimator of the subgradient

of f at κt. We provide an explicit solution for the problem

κt+1 = arg min
κ∈X∩RM

++

ηĜN(κt)
⊤κ+DΦ(κ, κt), (31)

when Φ(κ) =
∑M

m=1 κm ln(κm). By definition of Bregman divergence,

DΦ(κ, κt) = Φ(κ)− Φ(κt)− ⟨∇Φ(κt), κ− κt⟩.

Consequently, κt+1 is the solution to the following optimization problem

min
κ∈RM

++

ηĜN(κt)
⊤κ+

M∑
m=1

κm ln (κm/κt,m)−
M∑

m=1

(κm − κt,m), (32)

subject to the constraint
M∑

m=1

κm ≤ 1/α.
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Let µ denote the Lagrange multiplier associated with this constraint. Thus, the first-order conditions

of the problem for each κt+1,m become:

ηĜm,N(κt) + ln(κt+1,m/κt,m) + µ = 0, (33)

where Ĝm,N(κt) is the m-th entry of ĜN(κt). The first-order condition in (33) can be written as

κt+1,m = κt,m exp
(
−ηĜm,N(κt)

)
exp (−µ) .

Two cases to consider. First, if

M∑
m=1

κt,m exp
(
−ηĜm,N(κt)

)
< 1/α,

then µ = 0 and

κt+1,m = κt,m exp
(
−ηĜm,N(κt)

)
. (34)

Second, if
M∑

m=1

κt,m exp
(
−ηĜm,N(κt)

)
≥ 1/α,

then µ > 0 and
∑M

m=1 κt+1,m must equal 1/α. Consequently,

κt+1,m =
1

α
·

κt,m exp
(
−ηĜm,N(κt)

)
∑M

m=1 κt,m exp
(
−ηĜm,N(κt)

) , (35)

which can be achieved by setting

µ = ln

(
M∑

m=1

κt,m exp
(
−ηĜm,N(κt)

))
.
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Proof of Part 3 of the Theorem: The initial condition κ1 solves:

min
κ∈RM

++

M∑
m=1

κm ln(κm) s.t. ∥κ∥1 =
M∑

m=1

κm ≤ 1/α. (36)

We re-parameterize this problem by defining

K ≡ ∥κ∥1, pm ≡ κm/K, p = (p1, . . . , pM)⊤.

Since κ ∈ RM
++, then K > 0 and wm > 0 for all m = 1, . . . ,M . Moreover, if we denote by ∆M−1

the simplex in RM and use int
(
∆M−1

)
to denote its interior, the optimization problem in (36) thus

becomes the nested optimization problem

min
K>0

(
min

p∈int(∆M−1)
K

(
M∑

m=1

pm ln(pm)

)
+K ln(K)

)
s.t. K ≤ 1/α. (37)

Thus, we first solve the inner problem which consists of finding the distribution in the simplex

with the smallest negative entropy:

min
p∈int(∆M−1)

M∑
m=1

pm ln(pm).

It is known that the solution of this problem is to set pm = 1/M . We verify this below for the sake

of exposition. The first order conditions are

1 + ln(pm) + µ = 0,

where µ is the Lagrange multiplier associated with ∥p∥1 = 1. Solving for pm yields

pm = exp (−(1 + µ))
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which implies (by summing the left side over m = 1, . . . ,M):

1

M
= exp (−(1 + µ)) .

We conclude that p∗m = 1/M is the optimal direction of κ1. We now find its scale by solving the

outer optimization problem

min
K>0

K

(
M∑

m=1

1

M
ln

(
1

M

))
+K ln(K) = min

K>0
K(ln(K)− ln(M)) s.t. K ≤ 1/α. (38)

Without the constraint, the objective function has a global minimum at K∗ satisfying

ln(K∗) + 1− ln(M) = 0,

or equivalently, K∗ = M/ exp(1). It is also decreasing for K < K∗ and increasing for larger values.

Therefore, the solution to the problem in (38) is

K∗ =


M

exp(1)
if 1 ≤ M < exp(1)

α

1
α

if M ≥ exp(1)
α

.

,

Thus, the initial condition is

κ1 =


(

1
exp(1)

, . . . , 1
exp(1)

)
if 1 ≤ M < exp(1)

α
,(

1
Mα

, . . . , 1
Mα

)
if M > exp(1)

α
.

A.4 Proof of Theorem 2

The approximation error of the numerical iteration consists of two parts: optimization error and

estimation error. The former is intrinsic to the optimization algorithm when applying the exact

42



(sub)gradient, while latter is induced by the estimation error of the unknown subgradient.

Proof. By Lemma 1, the function f(·) in the dual problem (5) is convex. Consequently, for any

κ ∈ X ,

f

(
1

T

T∑
t=1

κt,m

)
− f(κ) ≤ 1

T

T∑
t=1

f(κt,m)− f(κ). (39)

Note under the S-MD routine of Algorithm 1, κt is a random variable. Part 1 of Theorem 1 showed

that, given the realized value of κt, ĜN(κt) is an unbiased estimator of the subgradient of f at

κt; that is, E
[
ĜN(κt)

]
= ∇f(κt)

⊤. Consequently, Equation (39) and the definition of subgradient

imply

f

(
1

T

T∑
t=1

κt,m

)
− f(κ) ≤ 1

T

T∑
t=1

∇f(κt) (κt − κ)

=
1

T

T∑
t=1

(
∇f(κt)

⊤ − ĜN(κt)
)⊤

(κt − κ) (40)

+
1

T

T∑
t=1

ĜN(κt)
⊤ (κt − κ) . (41)

It follows by Bubeck (2015, proof of Theorem 4.2 and Equation (10) on p.307) that (41) is

bounded above by

Dφ(κ, κ1)

ηT
+

η

2ρ

1

T

T∑
t=1

∥ĜN(κt)∥2∞,

where ρ is the parameter of the convexity of φ with respect to ∥ · ∥1. We have already proved in

Lemma 4 that ρ = α/2. Additionally, Dφ(κ, κ1) ≤ ln(M)/α. 13 Accordingly, (41) is bounded above

by

13When M > e
α , meaning the problem is high in dimension, then

R2 = sup
κ∈X

φ(κ)− φ(κ1)

=
1

α
ln

(
1

α

)
− 1

α

(
ln

(
1

α

)
− ln(M)

)
=

1

α
ln(M).
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Dφ(κ, κ1)

ηT
+

η

2ρ

1

T

T∑
t=1

∥ĜN(κt)∥2∞ ≤ ln(M)

αTη
+

η(1− α)2

α
, (42)

where ∥ · ∥∞ is the sup norm, and where the last inequality follows from the fact that α < 1/2.

Since

T =

⌈
4(1− α)2

α2ϵ2
· ln(M)

⌉
, and η = α · ϵ

2(1− α)2
,

we conclude that (41) is at most ϵ. Next, we upper bound the term (40). Define

∆t ≡ ĜN(κt)−∇f(κt). (43)

Given t and κt, we write ∆t as an average of N independent vectors, i.e.,

∆t =
1

N

N∑
n=1

∆t,n,

where ∆t,n ≡
(
φκt(Y

(t)
1,n)−

∫
φκtf1dν, ..., φκt(Y

(t)
M,n)−

∫
φκtfMdν

)
, n = 1, 2, ..., N.

Denote the M × N random vectors at time t as Yt ≡ (Y
(t)
m,n), and let Ft = σ(Y1, Y2, ..., Yt) denote

the canonical filtration of Yt. From our iteration, κt is Ft-predictable, i.e., σ(κt) ⊂ Ft−1 for each t.

Also note that ∥κt − κ∗∥1 ≤ 2/α for any κ ∈ X . Thus, applying Lemma 5 with Xt = κt − κ and

L = 2/α, we conclude that, for a given confidence level Ω > 0, (40) is upper bounded by

4Ω

α
√
TN

=
2Ωϵ√

(1− α)2 ln(M)N
,

with probability at least 1 − exp(−Ω2). The conclusion follows from combining the upper bound

for (41) and (40), and take κ = κ∗, the solution to the dual problem.
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A.5 Proof of Theorem 3

Proof. First, it is already derived in the proof for Theorem 2 that for any κ ∈ X ,

1

T

T∑
t=1

ĜN(κt)
⊤ (κt − κ) ≤ ln(M)

αηT
+

η(1− α)2

α
= ϵ (44)

For a given κ ∈ X , apply Lemma 5 with Xt = κ and Xt = κt, respectively. Notice that both

∥κ∥1 ≤ 1/α, ∥κt∥1 ≤ 1/α hold, then

Pr

[
1

T

T∑
t=1

(ĜN(κt)−∇f(κt))
⊤κ <

2Ω

α
√
TN

]
≥ 1− exp(−Ω2),

and Pr

[
1

T

T∑
t=1

−(ĜN(κt)−∇f(κt))
⊤κt <

2Ω

α
√
TN

]
≥ 1− exp(−Ω2).

Combining with (44), we have

Pr

[
1

T

T∑
t=1

ĜN(κt)
⊤κt −

1

T

T∑
t=1

∇f(κt)
⊤κ < ϵ+

2Ω

α
√
TN

]
≥ 1− exp(−Ω2), (45)

and similarly,

Pr

[
1

T

T∑
t=1

∇f(κt)
⊤κt −

1

T

T∑
t=1

ĜN(κt)
⊤κ < ϵ+

2Ω

α
√
TN

]
≥ 1− exp(−Ω2). (46)

Note (45) implies a high probability bound for the Type I error: take κm = 1/α for m = j and

κm = 0 for other m ̸= j. Then,

1

T

T∑
t=1

∇f(κt)
⊤κ =

1

T

T∑
t=1

M∑
m=1

κm(α−
∫

φtfmdν)

= α · 1
α
− 1

T

1

α

T∑
t=1

∫
φtfmdν = 1− 1

α

∫
φ̄fmdν.
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Taking it back to (45), we have

∫
φ̄fmdν ≤ α

(
1− 1

T

T∑
t=1

ĜN(κt)
⊤κt + ϵ+

2Ω

α
√
TN

)

with probability at least 1− exp(−Ω2). The first statement follows from the arbitrariness of m.

For the second statement, note according to (46), we have

1

T

T∑
t=1

∇f(κt)
⊤κt − ϵ− 2Ω

α
√
TN

≤ 1

T

T∑
t=1

ĜN(κt)
⊤κ

with probability at least 1− exp(−Ω2). Add the power of φ̄,
∫
φ̄gdν, to both sides. Notice that

power(φ̄) +
1

T

T∑
t=1

∇f(κt)
⊤κt =

1

T

T∑
t=1

f(κt) ≥ v̄,

taking κ = 0 leads to

power(φ̄) ≥ v̄ − ϵ− 2Ω

α
√
TN

,

with probability at least 1− exp(−Ω2). This concludes the proof of the second statement of Theo-

rem 3.
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Online Appendix

B Additional Technical Results

B.1 Additional Lemmas

Lemma 3. The function Φ : RM
++ → R given by Φ(κ) =

∑M
m=1 κm ln(κm) is a mirror map.

Proof. It is sufficient to verify the conditions i)-ii)-iii) given at the beginning of Section (3.1), which

are taken from Section 4.1 in Bubeck (2015). We first verify i); namely that Φ(·) is differentiable

and strictly convex. The gradient of Φ at any κ ∈ RM
++ is:

∇Φ(κ) = (1 + ln(κ1), ..., 1 + ln(κM)).

Thus, Φ is differentiable in its domain. Moreover, for any κ ∈ RM
++ the Hessian takes the form



1
κ1

0 ... 0

0 1
κ2

... ...

... ... ... ...

0 ... ... 1
κM


,

which is a positive definite matrix. Therefore, Φ(·) is strictly convex in its domain.

Next, we verify ii); namely, that ∇Φ(RM
++) = RM . Since ln(R++) = R, condition ii) holds.

Lastly, we verify condition iii), which in this case is equivalent to showing that for any κ∗ with

one or more entries equal to zero satisfies

lim
κ→κ∗

||∇Φ(RM
++)|| = ∞.
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Note that, if the m-th entry of κ∗ is zero, then

lim
x→0+

1 + ln(x) = −∞.

Therefore, condition iii) holds. Therefore, Φ(·) is a mirror map.

Lemma 4. The function Φ(κ) =
∑M

m=1 κm ln(κm) restricted on X is α
2
-strongly convex w.r.t. ∥ · ∥1.

Proof. We intend to prove, for any κ1, κ2 ∈ X ,

Φ(κ1)− Φ(κ2)− ⟨∇Φ(κ2), κ1 − κ2⟩ ≥
α

4
∥κ1 − κ2∥21 (47)

Define K1 ≡ ∥κ1∥1, K2 ≡ ∥κ2∥1, and p1 = κ1/∥κ1∥1, p2 = κ2/∥κ2∥1, we write

κ1 = K1p1, κ2 = K2p2.

Then, we decompose the left-hand side of (47) as

Φ(κ1)− Φ(κ2)− ⟨∇Φ(κ2), κ1 − κ2⟩ = K1 ln
K1

K2

− (K1 −K2) +K1

M∑
m=1

p1,m ln
p1,m
p2,m

Notice that:

1. the function Φ : (0, 1
α
] → R defined by Φ(x) = x ln(x) is α-strongly convex, so

K1 ln
K1

K2

− (K1 −K2) ≥
α

2
|K1 −K2|2.

2. p1, p2 are on the (M − 1)-dimensional simplex. We can apply the Pinsker’s inequality,

K1

M∑
m=1

p1,m ln
p1,m
p2,m

≥ K1

2
∥p1 − p2∥21 ≥

α

2
∥K1(p1 − p2)∥21.
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Together we get

Φ(κ1)− Φ(κ2)− ⟨∇Φ(κ2), κ1 − κ2⟩ ≥
α

2
|K1 −K2|2 +

α

2
∥K1(p1 − p2)∥21

=
α

2

(
∥K1p2 −K2p2∥21 + ∥K1p1 −K1p2∥21

)
≥ α

4
(∥K1p2 −K2p2∥1 + ∥K1p1 −K1p2∥1)2

=
α

4
∥K1p1 −K2p2∥21.

Lemma 5. Suppose our unbiased estimator ĜN(κt) is evaluated on M × N independent draws in

Yt. Then, for any γ > 0 and any {Xt ∈ RM , t = 1, 2, ...} that is Ft-predictable, if there exists a

constant L such that ∥Xt∥1 ≤ L, we have

E

[
exp(

γ

T

T∑
t=1

⟨Xt,∆t⟩)

]
≤ exp

(
γ2M2

TN

)
,

which leads to

Pr

[
1

T

T∑
t=1

⟨Xt,∆t⟩ ≥ δ

]
≤ exp

(
−TNδ2

4M2

)
.

Moreover, for a given confidence level Ω > 0, we have

Pr

[
1

T

T∑
t=1

⟨Xt,∆t⟩ ≥
2LΩ√
TN

]
≤ exp(−Ω2).

Proof. First, because for any t, n, ∥∆t,n∥∞ ≤ 1 and ∥Xt∥1 ≤ L,

E
[
exp(

⟨Xt,∆t,n⟩2

L2
)|Ft−1

]
≤ exp(1)

Apply the same steps as in Nemirovski, Juditsky, Lan, and Shapiro (2009): if 0 < γL ≤ 1, we apply
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ex ≤ x+ ex
2
and Cauchy-Schwarz inequality, which yields

E
[
exp (γ⟨Xt,∆t,n⟩) |Ft−1

]
≤ E

[
exp (γ2⟨Xt,∆t,n⟩2) |Ft−1

]
≤ exp (γ2L2) .

If γL > 1, Cauchy-Schwarz inequality implies

E
[
exp (γ⟨Xt,∆t,n⟩) |Ft−1

]
≤ E

[
exp (γL)

∣∣Ft−1

]
≤ exp

(
γ2L2

)
.

Therefore, in both cases,

E[exp(γ⟨Xt,∆t,n⟩)|Ft−1] ≤ exp(γ2L2).

Because {∆t,n, n = 1, 2, .., N} are independent, we have

E[exp(γ⟨Xt,∆t⟩)|Ft−1] = ΠN
n=1 E[exp(

γ

N
⟨Xt,∆t,n⟩)|Ft−1] ≤ exp

(
γ2L2

N

)
.

Applying Law of Iterated Expectations sequentially yields

E

[
exp(

γ

T

T∑
t=1

⟨Xt,∆t⟩)

]
= E

[
E[exp(

γ

T

T∑
t=1

⟨Xt,∆t⟩)|FT−1]

]

= E

[
E[exp(

γ

T
⟨XT ,∆T ⟩)|FT−1] · exp(

γ

T

T−1∑
t=1

⟨Xt,∆t⟩)]

]

≤ E

[
exp(

γ2L2

T 2N
+

γ

T

T−1∑
t=1

⟨Xt,∆t⟩)

]

≤ ... ≤ exp

(
γ2L2

TN

)
.

It follows by Markov’s inequality that

Pr

[
1

T

T∑
t=1

⟨Xt,∆t⟩ ≥ δ

]
≤

E[exp( γ
T

∑T
t=1⟨Xt,∆t⟩)]

exp(γδ)
≤ exp

(
γ2L2

TN
− γδ

)
,∀γ > 0.
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For a given confidence level Ω > 0, applying the above relation with γ = TNδ
2L2 abd δ = 2LΩ√

TN
yields

the desired conclusion.

B.2 Duality Results

In this section we formalize the connection between the optimization problems (3) and (5). Through-

out this section we assume that (Y ,F , ν) is a separable measure space in the sense of Exercise 10,

Chapter 1 in Stein and Shakarchi (2011).

Proposition 1. i) There exists a test φ∗ that solves (3); that is, φ∗ maximizes
∫
φgdν among all

level-α tests. ii) Furthermore, there exists an optimizer κ∗ to the dual problem (5), and the value

of the dual problem is finite. iii) Moreover, for any solution κ̂ of the dual (5), and for any test φ̂

that solves (3), the pair (φ̂, κ̂) satisfy:

φ̂(y) = 1, when g(y) >
M∑

m=1

κ̂mfm(y),

φ̂(y) = 0, when g(y) <
M∑

m=1

κ̂mfm(y),

(48)

and the complementary slackness,

κ̂m

(∫
φ̂fmdν − α

)
= 0,∀m ∈ [M ]. (49)

Proof. Let ν denote the σ-finite measure defined over the measurable space (Y ,F). In a slight

abuse of notation, denote by L∞(Y) the set of essentially bounded real-valued measurable functions

on (Y ,F). Let L1(Y) be the space of all real-valued measurable functions f : Y → R that are

integrable with respect to ν; that is
∫
|f |dν < ∞. Endow L∞(Y) with the weak∗-topology; see

Rudin (2005), p. 67, 68. By definition, a sequence {φn}n∈N ⊆ L∞(Y) converges to φ in the weak∗

topology if and only if ∫
fφndν →

∫
fφdν, for any f ∈ L1(Y),
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see p. 62-68 of Rudin (2005). It is known that when endowed with the weak∗ topology, the set

L∞(Y) is a linear topological space.

Proof of Statement i). Define the set of all tests

C := {φ ∈ L∞(Y) | 0 ≤ φ(y) ≤ 1 for ν-a.e. },

and consider the subset of all α-level tests

Cα :=

{
φ ∈ C |

∫
φfmdν ≤ α for all m = 1, . . . ,M

}
.

Note that Cα is nonempty since φ0 ∈ Cα for any α. By Lemma 6, the set Cα is compact under the

weak∗-topology. As the objective function in (3) is continuous in the weak∗-topology, we conclude

that there exists a test φ∗ that solves (3).

Proof of Statement ii). Recall the Lagrangian

L(φ, κ) =

∫
φgdν −

M∑
m=1

κm

[∫
φfmdν − α

]
.

We first show that Sion’s minimax theorem holds, i.e.,

sup
φ∈C

min
κ∈RM

+

L(φ, κ) = min
κ∈RM

+

sup
φ∈C

L(φ, κ) := v. (50)

First, by Lemma 6, C is a convex, compact subset of L∞(Y) when endowed with the weak∗ topology.

It is clear that RM
+ is a convex subset of RM . Second, since we endowed L∞(Y) with the weak∗

topology, then, by definition, for any fixed κ, the functional L(·, κ) : C → R is a continuous

functional, that is also linear. Similarly, for any fixed φ, L(φ, ·) : RM
+ → R is a continuous and

linear function of κ. Therefore, all conditions of Sion’s minimax theorem are verified; see Simons

(1995, Theorem 3).
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Since

sup
φ∈Cα

∫
φgdν = sup

φ∈C
min
κ∈RM

+

L(φ, κ),

and by part i) of Proposition 1 there exists a test φ∗ ∈ Cα such that

∫
φ∗gdν = sup

φ∈Cα

∫
φgdν,

then

0 ≤ v ≤ 1.

Therefore, by definition of minimum, there exists multipliers κ∗ ∈ RM
+ such that

0 ≤ sup
φ∈C

L(φ, κ∗) = min
κ∈RM

+

sup
φ∈C

L(φ, κ) := v ≤ 1.

Proof of Statement iii). Let κ̂ be an arbitrary solution to the dual problem in (5). Let φ̂ be

an arbitrary solution to the primal (3). First, we would like to show that

inf
κ∈RM

+

L(φ̂, κ) = sup
φ∈C

min
κ∈RM

+

L(φ, κ), (51)

which means that φ̂ solves the maxmin problem. To this end, note that

∫
φ̂gdν = sup

φ∈Cα

∫
φgdν = sup

φ∈C
min
κ∈RM

+

L(φ, κ).

Moreover, for any φ ∈ Cα,

min
κ∈RM

+

L(φ, κ) =

∫
φgdν.

We conclude that

min
κ∈RM

+

L(φ̂, κ) =

∫
φ̂gdν = sup

φ∈Cα

∫
φgdν = sup

φ∈C
min
κ∈RM

+

L(φ, κ).
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This establishes (51). By (51) and (50), we have

L(φ̂, κ̂) ≥ min
κ∈RM

+

L(φ̂, κ) = sup
φ∈C

min
κ∈RM

+

L(φ, κ)

= min
κ∈RM

+

sup
φ∈C

L(φ, κ) = sup
φ∈C

L(φ, κ̂) ≥ L(φ̂, κ̂).

Then, note that L(φ̂, κ̂) = infκ∈RM
+
L(φ̂, κ), implying (49). Also, L(φ̂, κ̂) = supφ∈C L(φ, κ̂), implying

(48).

Below is a lemma proving that the domain of the primal problem is compact.

Lemma 6. Let (Y ,F , ν) be a separable measure space in the sense of Exercise 10, Chapter 1 in

Stein and Shakarchi (2011) and let ν be a σ-finite measure. Define

C := {φ ∈ L∞(Y) | 0 ≤ φ(y) ≤ 1 for ν-a.e. y ∈ Y},

and

Cα :=

{
φ ∈ C |

∫
φfmdν ≤ α for all m = 1, . . . ,M

}
.

Then, C and Cα are compact in the weak∗ topology (where L∞(Y) is viewed as the dual space of

L1(Y)). Moreover, C is a convex subset of L∞(Y).

Proof. Recall that L∞(Y) is identified with the dual of L1(Y), and the weak∗ topology on L∞(Y)

is the weakest topology that makes all maps

φ 7→ ⟨f, φ⟩ :=
∫
Y
φf dν,

continuous for every f ∈ L1(Y). By the Banach–Alaoglu theorem (Rudin, 2005, p.68), the closed

unit ball

B :=

{
φ ∈ L∞(Y)

∣∣∣ ∣∣∣∣∫
Y
φf dν

∣∣∣∣ ≤ 1 for all f ∈ L1(Y) with ∥f∥1 ≤ 1

}
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is compact in the weak∗-topology.

Observe that

C := {φ ∈ L∞(Y) | 0 ≤ φ(y) ≤ 1 for ν-a.e. y ∈ Y}

is a subset of B, since for any φ ∈ C and any f ∈ L1(Y) with ∥f∥1 ≤ 1, one has

∣∣∣∣∫
Y
φf dν

∣∣∣∣ ≤ ∫
Y
|φ||f | dν ≤

∫
Y
|f | dν ≤ 1.

We now show that C is weak∗-sequentially closed. Suppose that {φn}∞n=1 is a sequence in C that

converges to some φ ∈ L∞(Y) in the weak∗ topology. Assume for contradiction that φ /∈ C; then

either the set A+ := {y ∈ Y | φ(y) > 1} or A− := {y ∈ Y | φ(y) < 0} has positive measure w.r.t.

ν. Without loss of generality, assume that ν(A+) > 0. Define the function

f(y) :=
1A+(y)

ν(A+)
.

Then f ∈ L1(Y) and ∥f∥1 = 1. Since each φn ∈ C, we have

∫
Y
φnf dν ≤ 1 for all n.

By the weak∗ convergence we obtain

lim
n→∞

∫
Y
φnf dν =

∫
Y
φf dν ≤ 1

On the other hand, because (φ− 1)f is positive we have

∫
Y
(φ− 1)f dν ≥ 0 =⇒

∫
Y
φf dν ≥ 1.

This implies that
∫
φfdν = 1, which in turn gives

∫
(φ − 1)fdν = 0. Such equality holds only
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when (φ − 1)f = 0 for ν-almost surely. However, (φ − 1)f > 0 on A+. This contradicts the fact

that ν(A+) > 0! This contradiction shows that φ(y) ∈ [0, 1] for ν-almost every y ∈ Y , i.e., φ ∈ C.

Therefore, C is sequentially closed in the weak∗-topology. Since (Y ,F , ν) is a separable measure

space, then L1(Y) is separable; see Exercise 10, Chapter 1 in Stein and Shakarchi (2011). Therefore,

Theorem 3.16 in Rudin (2005) p. 70 implies that B (with its subspace weak∗ topology) is compact

and metrizable. This means that the sequential closure of C coincides with its closure; thus showing

that C is closed in the weak∗ topology. Since C is a closed subset of the compact set B, it is compact

in the weak∗ topology. The proof that Cα is compact is entirely analogous and we omit it for the

sake of brevity.

Finally, C is convex because if φ1, φ2 ∈ C and t ∈ [0, 1], then for ν-almost every y ∈ Y ,

(1− t)φ1(y) + tφ2(y) ∈ [0, 1],

which implies that (1− t)φ1 + tφ2 ∈ C.

B.3 Theoretical Results on φκ̄T

B.3.1 Asymptotic analyses of φκT

Lemma 7. Suppose the conditions of Theorem 2 hold. Then, we have f(κT )
p→ ῡ as T → ∞.

Proof. For each T , let

εT =
2(1− α)

α

√
lnM

T
, ηT =

α

2(1− α)2
εT .

Denote by {κT,j}Tj=1 the sequence generated by Algorithm 1 with step number T and step size ηT .

Then, κT = 1
T

∑T
j=1 κT,j. It follows by Theorem 2 that, for any Ω > 0,

Pr

{
|f(κ̄T )− ῡ| >

(
1 +

2Ω√
(1− α)2N lnM

)
εT

}
< exp

(
−Ω2

)
.
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For each ε > 0, pick Ω = εα
8

√
NT . Then, for all T > lnM

( εα
4(1−α))

2 , we have

Pr {|f(κ̄T )− ῡ| > ε} < exp

(
−ε2α2NT

64

)
,

implying f(κT )
p→ ῡ as T → ∞.

Lemma 7 shows that, κT is also asymptotically a least favorable distribution. This result is

expected given Theorem 2’s finite-sample numerical convergence result. Next, we show that, with

additional regularity conditions, the Neyman-Pearson test φκT
based on κT is asymptotically opti-

mal as T → ∞.

Proposition 2. Suppose the conditions of Theorem 2 hold. In addition, suppose for all κ ∈ R+
M ,

we have g(y)−
∑M

m=1 κmfm(y) ̸= 0 for ν-almost all y. Then, the following statements are true:

1.
∫
φκT

gdν
p→ v̄ as T → ∞;

2. For each convergent subsequence {κTt} of κT , we have

lim sup
t→∞

∫
φκTt

(y)fjdν ≤ α, ∀j ∈ [M ],

as t → ∞;

3. If κ∗ is unique, we have

∫
φκT

(y)fjdν
p→
∫

φκ∗fjdν,∀j ∈ [M ],

as T → ∞.

Proof. First note, under the stated assumptions in the proposition, the absolute continuity of Fj, j =

1, . . . ,M and G with respect to ν implies that, g(y) ̸=
∑M

m=1 κ
∗
mfm(y) for Fj-almost all y, for each
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j = 1 . . .M , and the same holds for G-almost all y as well. Together with Proposition 1, we have

that, for any solution of the dual κ∗, the test of form φκ∗ , i.e.,

φκ∗(y) = 1, when g(y) >
M∑

m=1

κ∗
mfm(y),

φκ∗(y) = 0, when g(y) ≤
M∑

m=1

κ∗
mfm(y)

is such that

∫
φκ∗fmdν ≤ α, ∀m ∈ [M ],

∫
φκ∗gdν = ῡ. (52)

Moreover, dominated convergence theorem implies that the size function

αj(· ) =
∫

φ(·)fjdν : RM
+ → R+,

is continuous at all κ ∈ R+
M , for each j = 1, . . . ,M , and the power function

π(· ) =
∫

φ(·)gdν : RM → R+

is continuous at all κ ∈ R+
M as well.

Proof of Part 1 of the Theorem: As κT is bounded, Prohorov’s Theorem (e.g., Theorem

2.4(ii) in Van der Vaart 2000) implies that there exists a converging subsequence {κTt} such that

κTt

d→ XM as t → ∞, where XM is a random vector in RM
+ . Denote by PXM

the probability measure

for the distribution of XM . Since f is continuous, continuous mapping theorem implies that, as

t → ∞,f(κTt)
d→ f(XM). As we also know f(κT )

p→ ῡ as T → ∞, conclude that f(κT )
d→ ῡ,

implying that f(κTt)
d→ ῡ as t → ∞ as well. Therefore, f(XM) must share the same distribution

as ῡ. Conclude that f(xM) = ῡ, for PXM
-almost every xM . Since ῡ is the optimal value, this

implies that for PXM
-almost every xM , we have f(xM) = ῡ = infκ∈RM

+
f(x), i.e., xM solves the dual
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problem. Therefore, due to (52), we have
∫
φxM

gdν = v̄ for PXM
-almost every xM . Conclude that∫

φXM
gdν = ῡ with probability 1. By continuity of the power function π(· ) =

∫
φ(·)gdν in RM

+ ,

conclude further that as t → ∞,

π(κTt)
d→
∫

φXM
gdν = v̄.

As the preceding convergence claim holds for every convergent subsequence, conclude that π(κT )
d→

v̄, as T → ∞, implying π(κT )
p→ v̄.

Proof of Part 2 of the Theorem: Analogous to the proof of part 1 of the theorem, consider

a convergent subsequence {κTt} that converges in distribution to some random vector XM ∈ RM
+

with a probability measure PXM
for its distribution function. Note, by analogous arguments to the

proof of part 1, for PXM
-almost every xM , we have

∫
φxM

fjdν ≤ α, ∀j ∈ [M ]. (53)

Therefore,
∫
φXM

fjdν ≤ α with probability 1 for each j ∈ [M ]. The proof is further divided in

three steps.

Step 1: We show that αj(κTt)
p→
∫
φXM

fjdν for each j ∈ [M ]. Note since αj is bounded and

continuous, Portmanteau’s Lemma implies that

Eαj(κTt) → E
∫

φXM
fjdν ≤ α

as t → ∞. As αj(κTt) is bounded, αj(κTt) is also uniformly integrable. Therefore, we have

αj(κTt)
p→
∫

φXM
fjdν

as t → ∞ for each j ∈ [M ].
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Step 2: We show that for any ϵ > 0, we have, as t → ∞, P{αj(κTt) ≤ α+ ϵ} → 1. For any ϵ > 0,

it suffices to show that P{αj(κTt) > α+ ϵ} → 0 as t → ∞. To this end, note for any 0 < δ < ϵ:

P{αj(κTt) > α+ ϵ}

=P{αj(κTt) > α+ ϵ, αj(κTt)−
∫

φXM
fjdν > δ}

+P{αj(κTt) > α+ ϵ, αj(κTt)−
∫

φXM
fjdν ≤ δ}

≤P

{
αj(κTt)−

∫
φXM

fjdν > δ

}
+P

{∫
φXM

fjdν > α+ ϵ− δ

}
.

Note P{αj(κTt)−
∫
φXM

fjdν > δ} → 0 as t → ∞ by the conclusion from step 1, and P{
∫
φXM

fjdν >

α + ϵ− δ} = 0 since ϵ− δ > 0. Conclude that P{αj(κTt) > α+ ϵ} → 0 as t → ∞.

Step 3: As ϵ is arbitrary, conclude that P{αj(κTt) ≤ α} → 1, as t → ∞, implying lim supt→∞ αj(κT,t) ≤

α as desired.

Proof of Part 3 of the Theorem: Since f(κT )
p→ v̄ = f(κ∗) as T → ∞ and κ∗ is the unique

solution of the dual, we must have κT
p→ κ∗ as well given continuity of f . The conclusion then

follows immediately from continuous mapping theorem.
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